Experimental Study on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete

来源 :Journal of Materials Science & Technology | 被引量 : 0次 | 上传用户:mlove251
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Carbon fiber reinforced concrete (CFRC) is a kind of good electrothermal material. When connected to an external power supply, stable and uniform heat suitable for deicing application is generated in the CFRC slab. Electric heating and deicing experiments of carbon fiber reinforced concrete slab were carried out in laboratory, and the effect of the temperature and thickness of ice, the thermal conductivity of CFRC, and power output on deicing performance and energy consumption were investigated. The experimental results indicate that it is an effective method to utilize the thermal energy produced by CFRC slab to deice. The time to melt the ice completely decreases with increasing power output and ice temperature, and increases with increasing thickness of the ice. The energy consumption to melt 2 mm thickness of ice varies approximately linearly from 0.556 to 0.846 kW·h/m2 as the initial temperature ranges from -3℃ to - 18℃. CFRC with good thermal conduction can reduce temperature difference in CFRC When connected to an external power supply, stable and uniform heat suitable for deicing application is generated in the CFRC slab. Electric heating and deicing experiments of carbon fiber reinforced concrete slab were carried out in laboratory, and the effect of the temperature and thickness of ice, the thermal conductivity of CFRC, and power output on deicing performance and energy consumption were investigated. The experimental results that it is an effective method to utilize the thermal energy produced by CFRC slab to deice. The time to melt the ice completely decreases with increasing power output and ice temperature, and increases with increasing thickness of the ice. The energy consumption to melt 2 mm thickness of ice varies approximately linearly from 0.556 to 0.846 kW · h / m2 as the initial temperature ranges from -3 ° C to - 18 ° C CFRC with good thermal conduction can reduce temperatur e difference in CFRC
其他文献
本文用实例说明一种在振动环境中作全息试验的技术。这种技术的优点有:能对大结构就地检查它的小区域,能在结构整体作大幅度运动时检查它的局部区域的变形,能在象工厂车间这