The modulating effect of N coordination on single-atom catalysts researched by Pt-Nx-C model through

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:ahclgc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
N-doped carbon-based single-atom catalysts (NC-SACs) are widely researched in various electrochemi-cal reactions due to high metal atom utilization and catalytic activity.The catalytic activity of NC-SACs originates from the coordinating structure between single metal site (M) and the doped nitrogen (N) in carbon matrix by forming M-Nx-C structure (1≤ x≤ 4).The M-N4-C structure is widely considered to be the most stable and effective catalytic site.However,there is no in-depth research for the “x” modula-tion in Pt-Nx-C structure and the corresponding catalytic properties.Herein,atomically dispersed Pt on N-doped carbon (Pt-NC) with Pt-Nx-C structure (1≤ x≤ 4),as a research model,is fabricated by a ZIF-8 template and applied to catalytic oxygen reduction.Different carbonization temperatures are used to control N loss,and then modulate the N coordination of Pt-Nx-C structure.The Pt-NC has the predictable low half-wave potential (E1/2) of 0.72 V vs RHE compared to the Pt/C 20% of 0.81V due to low Pt content.Remarkably,the Pt-NC shows a high onset potential (1.10 V vs RHE,determined forj =-0.1 mAcm2) and a high current density of 5.2 mA cm-2,more positive and higher than that of Pt/C 20% (0.96 V) and 4.9 mA cm-2,respectively.As the structural characterization and DFT simulation confirmed,the reducing Pt-N coordination number induces low valence of Pt atoms and low free energy of oxygen reduction,which is responsible for the improved catalytic activity.Furthermore,the Pt-NC shows high mass activity (172 times higher than that of Pt/C 20g),better stability and methanol crossover resistance.
其他文献
A common challenge in direct energy deposition (DED) is eliminating the anisotropy in mechanical per-formance associated with microstructure and the formation of coarse columnar grains.In this work,a heterogeneous nucleation mechanism was introduced into
Recent technical progress in the industry has led to an urgent requirement on new materials with enhanced multi-properties.To meet this multi-property requirement,the materials consisting of three and more elements have attracted increasing attention.Howe
旋挖钻机作为桩基础施工的主要工程机械,凭借其钻孔效率高、成孔质量好且环保性能良好而被广泛应用于基础施工中。然而随着当前国家基础设施建设要求的不断提高,桩基施工需要更深、更稳固的地基,在此施工要求下的地层条件复杂,且在深部、复杂地层条件下的施工容易引起钻杆严重振动、产生失效,钻具和钻齿严重磨损,从而导致施工效率低下。为了提高深部、复杂地层条件下钻机安全高效的施工,本文依托国家自然科学基金(51805
In this paper,we were devoted to quantitatively analyzing the dimensional change of 2024AI alloy dur-ing the aging process.Types of precipitates have been defined and the corresponding volume fraction has been measured with Transmission Electron Microscop
A comparative analysis is performed on the structural damage response and associated mechanisms in lanthanum aluminate and yttrium aluminate crystals under various irradiation conditions by a combi-nation of experimental and theoretical approaches.Under l
Temperature is one of the fundamental parameters for thermodynamics and its accurate detection is nec-essary.The novel strategy of luminescent materials based on the fluorescence intensity ratio technique has been promised for thermometers in more practic
In order to reduce implant-related infections and improve early osseointegration,we performed HF+anodic oxidation on the surface of the new antibacterial Ti-Cu alloy to make the titanium-based implants have a micro/submicron structure.On this basis,a seri
我国现役钢筋混凝土结构常因各种不利因素出现劣损致使结构承载性能下降。因此,亟需寻求一种高效经济的补强加固方法。嵌入式加固技术(Near Surface Mounted,NSM)是一种新兴的结构补强手段,结合延性加固材料铝合金,相关专家学者提出了铝合金嵌入式补强钢筋混凝土结构方法。为研究嵌入式加固混凝土梁的抗弯性能,本文开展了7根嵌入式补强钢筋混凝土梁的静力试验研究,建立了基于界面力学模型的嵌入式加
Rechargeable magnesium batteries have received increasing interest because of the prominent advan-tages,including high security,low cost,and high energy density.The development of rechargeable mag-nesium batteries is hindered by the sluggish Mg2+ ion diff
Directed energy deposition has been used to repair superalloy components in aero engines and gas tur-bines.However,the microstructure and properties are generally inhomogeneous in components because of the different processing histories.Here,the microstru