一类以鞅为驱动的随机泛函微分方程强解的存在性与唯一性

来源 :应用数学 | 被引量 : 0次 | 上传用户:kongguoying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在积分型Lipschitz条件下,证明了一类以连续鞅为驱动的随机泛函微分方程解的存在性与唯一性.
其他文献
下面的问题被称为n个外观不可区分硬币的分组测试问题,每个硬币可以是伪硬币或是标准硬币.本文所涉及的问题是:已知一个由n个硬币组成的集合中有两个伪(较重的)硬币,用一台天
本文研究了随机规划ε-逼近最优解集的Haudorff收敛性条件,证明了随机规划逼近最优值的收敛性,并利用此结果给出了随机规划ε-逼近最优解集Haudorff收敛的一个充分条件。
本文将经典Hardy空间上复合算子的理论、方法应用到解析算子函数空间上,给出了解析算子函数空间的几个基本性质及复合算子的有界性条件.
本文利用移动球面法证明了一类半线性椭圆型方程组正解的存在性与不存在性.
对Boltzman方程的BGK模型,我们证明了,对任意s〉2,如果初始值的s阶矩有限,则其分布解的s阶矩在任何时间区间[0,T]上保持有界。
本文通过构造一个可逆马氏链模型,描述了股票市场中多组相互作用人群的进出与彼此间的转移.我们推导出了人群大小的稳定分布;同时给出了人群中出现无限集(指大量人群集中在一