一种深度强化学习的C-RAN动态资源分配方法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:llww6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动边缘计算(MEC)技术已成为云无线接入网(C-RAN)提供近距离服务的一个很有前途的例子,从而减少了服务延迟,节约了能源消耗.本文考虑一个多用户MEC系统,解决了计算卸载策略和资源分配策略问题.我们将延迟总成本和能耗作为优化目标,在一个动态的环境中获得一个最优的策略.提出了一个基于深度强化学习的优化框架来解决资源分配问题,利用深度神经网络(DNN)对批评者的价值函数进行估计,从当前状态直接提取信息,不需要获取准确的信道状态.从而降低了优化目标的状态空间复杂度.参与者使用另一个DNN来表示参数随机策略,并在批评者的帮助下改进策略.仿真结果表明,与其它方案相比,该方案显著降低了总功耗.
其他文献