一类复对称线性方程组的单步HSS迭代法

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:ewqvcx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于修正的埃尔米特和反埃尔米特分裂(MHSS)及预处理的MHSS(PMHSS)迭代法,提出了关于一类复对称线性方程组的单步MHSS(SMHSS)和单步PMHSS(SPMHSS)迭代法,进一步利用优化技巧给出了位移参数的动态选择格式,得出相应的带有灵活位移的SMHSS方法及SPMHSS迭代法.理论分析表明,迭代参数&在较弱的约束条件下,SMHSS迭代法收敛于复对称线性方程组的唯一解.同时,得到了SMHSS迭代矩阵的谱半径的上界,并且求得使上述上界最小的最优参数a’.进一步给出了SPMHSS方法的收敛性分析.
其他文献
锥体积测度在凸几何分析中扮演着重要的角色.给出了"正交补变换"的定义,并且证明了关于凸体的锥体积测度的两个命题等价.最后,给出了相关的性质及应用.
研究给定矩阵束的最佳逼近问题,这类问题出现在同时修正有限元模型质量矩阵和刚度矩阵的无阻尼结构系统.以矩阵束修正量的F-范数为目标函数,以待修正矩阵束应具有的性质,如满足特
首先介绍张量基本概念、张量乘积及张量CP分解和Tucker分解.其次,将张量运用于统计模型当中,得到张量回归模型.再结合张量矩阵化和张量分解,给出该模型参数张量的最小二乘估
研究了具有一般状态方程p=p(ρ)相对论p-系统的Riemann问题及其波的相互作用.利用相平面分析的方法得到了这些问题整体熵解的存在性及唯一性,将Chen的有关p=ργ的相关工作(C
研究两个混沌时滞神经网络在加入一个新的自适应控制器的条件下达到同步的问题.通过构造一个新的李雅普诺夫函数并结合李雅普诺夫稳定性原理、LMI工具箱和自适应反馈控制原理
纠错码理论是保证信息传输可靠性的重要理论基础,经过六十多年的发展,纠错码得到了广泛的应用与研究.主要研究了duadic常循环码的一些性质,重点讨论了Type-Ⅱduadic常循环码