Vertical WS2 spin valve with Ohmic property based on Fe3GeTe2 electrodes

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:moccaaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been recently proposed as a promising class of materials for spintronic applications.Here,we report on the all-2D van der Waals (vdW) heterostructure spin valve device comprising of an exfoliated ultra-thin WS2 semiconductor acting as the spacer layer and two exfoliated ferromag-netic Fe3GeTe2 (FGT) metals acting as ferromagnetic electrodes.The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS2,which could be originated from the strong interface hybridization.The spin valve effect persists up to the Curie temperature of FGT.Moreover,our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property,which is a highly desirable feature for practical application that requires stable device perfor-mance.Our work reveals that WS2-based all-2D magnetic vdW heterostructure,facilitated by combining 2D magnets,is expected to be an attractive candidate for the TMDCs-based spintronic applications.
其他文献
Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials.We investigate the role of pinning in
期刊
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CemMnIn3m+2n (with M=Co,Rh,Ir,and Pt,m =1,2,n =02),at low temperature using on-resonance angle-resolved photoemission spectroscopy.Three heavy quasip
期刊
The neutron Bragg-edge imaging is expected to be a new non-destructive energy-resolved neutron imaging technique for quantitatively two-dimensional or three-dimensional visualizing crystallographic information in a bulk material,which could be benefited f
Since the discovery of magnetism in two dimensions,effective manipulation of magnetism in van der Waals magnets has always been a crucial goal.Ionic gating is a promising method for such manipulation,yet devices gated with conven-tional ionic liquid may h
The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant Big-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fel-x
We investigate the advantage of coherent superposition of two different coded channels in quantum metrology.In a continuous variable system,we show that the Heisenberg limit 1/N can be beaten by the coherent superposition with-out the help of indefinite c
Recently,intrinsic antiferromagnetic topological insulator MnBi2Te4 has drawn intense research interest and leads to plenty of significant progress in physics and materials science by hosting quantum anomalous Hall effect,axion insulator state,and other q
期刊
The ferromagnetism of two-dimensional (2D) materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials (TM-NH MOF,TM =Sc-Z
Graphene oxide membranes (GOMs),as one of the most promising novel materials,have gained great interest in the field of adsorption.However,the oxygen content of graphene oxide is directly related to its adsorption properties,such as suspension stability,a
期刊
Multiple steady solutions and hysteresis phenomenon in the square cavity flows driven by the surface with antisymmet-ric velocity profile are investigated by numerical simulation and bifurcation analysis.A high order spectral element method with the matri