PEMFC氯化钠中毒等效欧姆极化模型的构建与仿真

来源 :电源技术 | 被引量 : 0次 | 上传用户:yulong19841001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氯化钠中毒对质子交换膜燃料电池(PEMFC)极化性能有重要影响。通过量纲分析方法建立了PEMFC氯化钠中毒等效欧姆极化模型,利用COMSOLMultiphysics量化分析了氯化钠质量浓度对PEMFC电化学性能的影响,仿真数据与公开实验数据基本吻合,验证了模型准确性。结果表明:氯化钠质量浓度小于8×10-6mg/cm3时,Na+对PEMFC的影响可忽略不计;氯化钠质量浓度由0增长到8×10-3 mg/cm3,极化曲线斜
其他文献
图像融合一直以来都是图像处理与机器视觉领域中极其重要的研究方向,而稀疏表示(Sparse Representation, SR)是当前应用最为广泛的图像表示理论之一。针对传统的基于稀疏表示的图像融合策略对超完备字典信息利用不足的问题,提出了基于原子加权稀疏表示(Atom-weighted Sparse Representation, AWSR)的图像融合算法。首先,利用超完备字典对源图像进行稀疏域
单晶型高镍锂离子电池正极材料,具有工作电压高、比容量高、压实密度高等优势,极具应用潜力.为了改善单晶高镍材料的循环稳定性和热稳定性,选用具有良好抗氧化性的高分子聚合
负极材料对锂离子电池的电化学性能至关重要。使用NaOH刻蚀得到无氟Ti3C2Tx(T=OH,O)材料并通过氮掺杂、水热原位生长SnO2得到一种N-Ti3C2Tx/SnO2复合材料用于锂离子电池的负极。SnO2纳米粒子分散均一地锚固在高导电的N掺杂MXene骨架上,可以加速电子传输并缓冲SnO2
为实现高精度的动力电池SOC估计,需要建立准确的电池模型。针对磷酸铁锂电池平台特性,采用二阶RC等效电路建立电池的等效电路模型;用双指数函数拟合OCV与SOC的函数关系;采用双线性变换法将电池的数学模型离散化,得到可辨识的电池数学模型。为保证电池模型的精度,要对电池模型的参数进行辨识。首次提出一种基于天牛须搜索算法的电池模型参数辨识方法。用该方法对建立的电池模型进行辨识后,用Simulink对模型进行了脉冲放电与恒流放电仿真测试,并与离线测量数据进行对比,结果表明模型的最大动态误差不超过30 mV,说明该
锂离子电池容量损失主要是由于电池内部老化所导致的,电池内部老化模式主要包括锂离子损失(LLI),正极活性材料损失(LAMPE)以及负极活性材料损失(LAMNE)。微分电压(DV)曲线特征值的变化能够用来分析电池内部的老化模式,但是由于容量增量(IC)曲线特定的峰谷变化对应电池内部多种衰退模式,因而DV曲线的特征变化对应的具体老化模式需要进行具体分析。基于半电池充放电曲线合成全电池充放电曲线的方法,分析了DV曲线形状特征变化所对应电池内部的老化模式,为电池健康状态
通过水热法和共沉淀法合成了锌铝水滑石。通过XRD、FTIR和SEM等对锌铝水滑石形貌、结构进行了表征,并对样品的电化学性能进行了测试。研究结果表明:两种合成方法都能制备具有锌铝水滑石特征峰的样品,水热法可以制备由纳米片堆叠的球状锌铝水滑石聚集体;CV测试表明水热法合成锌铝水滑石的氧化还原峰电位差较小,表明电极材料具有更好的可逆性。Tafel测试表明水热法合成锌铝水滑石电极具有更正的腐蚀电位和更小的腐蚀电流,耐腐蚀性能良好。恒电流充放电测试表明,水热法合成锌铝水滑石具有更优良的电化学性能,表现在更长的循环寿
采用高温升华工艺对NiCl2材料进行处理,表征测试结果表明,处理得到的NiCl2正极材料具有更好的结构。实验表明在850℃升华下得到的NiCl2升华粉作为热电池正极材料时,单体电池的放电性能最佳。由于NiCl2材料导电性能较差,针对这一特征,对金属和非金属导电剂的添加进行了研究,同时也进一步对混合导电剂的改性进行研究,发现添加复配比例m(石墨烯)∶m(镍粉)为3∶7的混合导电剂的单体电池放电性能最优,初始放电电压为2.
为评价质子交换膜燃料电池(PEMFC)电堆低温起动性能,搭建PEMFC电堆低温起动试验台,制定典型道路工况,起动PEMFC电堆进行试验,对其加载典型道路工况,开始阶段使PEMFC电堆在小负荷暖机工况运行。对PEMFC电堆输出不同特性曲线进行深入分析,试验证明当PEMFC电堆最外层电池阴极催化层温度降到0℃时能够成功起动并运行,为PEMFC电堆的商业化运行提供一定技术支持。
一体式再生燃料电池(URFC)的性能衰减问题是阻碍其应用的瓶颈,有必要探明其衰减机理.通过发电-电解模式循环实验对URFC进行了耐久性测试,通过电化学阻抗谱和微观物理表征方法
阀控式铅酸蓄电池是变电站直流系统中最为可靠的电源,在站用交流失电的情况下,能够及时向保护、测控等直流负荷供电。但阀控式铅酸蓄电池经较长时间运行后,较易出现极板老化的问题,为了研究极板老化缺陷对阀控式铅酸蓄电池组温度分布的影响,基于COSMOL Multiphysics搭建了蓄电池组仿真模型,并且结合极板老化特点改进了老化蓄电池组模型,分析了正常蓄电池组在负荷电流50 A下的温度分布情况。基于蓄电池组的温度分布特点,设置了老化蓄电池的分布情况,研究了老化蓄电池组的温度分布特点,并且对比了正常与老化蓄电池组的