论文部分内容阅读
针对包含多道加工工序、输入变量很多的复杂工业系统建模精度难以提高的问题,提出一种改进的前馈神经网络结构,输入变量不是由同一层输入,而是根据变量堤作用的前后次序分别在网络的不同层输入,真实反映了大工业过程的各生产工序中的参数发生作用的时间顺序。同时由于输入变量在适当的时候输入网络,从而使网络的规模减小。该神经网络是处理高维问题,尤其是建立包含多道加工工序的大工业过程模型问题的强有力工具。将该神经网络用于热连轧产品质量建模,经过实测数据拟合与检验,仿真结果表明:提出的小渡神经网络结构是可行的而且有很好的应用前