论文部分内容阅读
针对短期风电功率预测,提出一种基于主成分分析(PCA)和一型非单值区间二型模糊逻辑系统(FLS)相结合的方法.PCA方法可对预测模型的高维输入进行降维,在此基础上考虑到风电功率数据的随机性特点,建立一型非单值区间二型FLS预测模型,应用反向传播(BP)算法设计预测模型前件和后件的参数,进一步将SVD-QR算法应用到BP算法的结果中以确定约简后的模糊规则集合,迭代至算法的执行结果满足预测精度的要求.将该文方法应用于不同地区的风电场风电功率预测实例中,在同等条件下还分别与SVM(支持向量机)、一型非单值FLS、一型非单值区间二型FLS、PCA-单值区间二型FLS等其他预测方法进行比较.实验结果表明,所提方法取得了较高的预测精度,具有很好的预测效果,同时,模型的模糊规则数少,较好地解决了模糊模型的规则“爆炸”问题,这使得PCA-区间二型FLS方法在风电功率预测领域具有较好的应用潜力.