论文部分内容阅读
支持向量机在处理分类问题时有着其特有的优势,其分类结果与参数和核函数有关,它们决定着支持向量机的学习能力和推广能力。本文在考虑核函数及其性质的基础上,使用一种新的组合核函数方法,对全局核函数和局部核函数利用线性组合的方法来进行个人信用的评估,并在数据集Australian和Germany上加以实例验证。结果表明:组合核函数的支持向量机优于单一的支持向量机。