论文部分内容阅读
针对支持向量机(SVM)最佳算法参数难以确定以及基本粒子群算法(PSO)易陷入局部极值等不足,提出免疫粒子群算法(IAPSO),利用IAPSO算法搜寻SVM学习参数,构建IAPSO-SVM预测模型,并与PSO-SVM、GA-SVM模型作为对比,以云南省某水文站枯水期月径流预测为例进行实例研究,利用实例前43年和后10年资料对模型进行训练和预测。结果表明:IAPSO-SVM模型对实例后10年枯水期1-3月月均径流预测的平均相对误差绝对值分别为3.32%、6.52%和6.55%,精度优于PSO-SVM和GA-