论文部分内容阅读
为解决沥青转运车螺旋搅料器搅拌特性建模困难的问题,运用人工智能理论建立了以螺距、叶片半径为输入,沥青混合料的离析率为输出的神经网络模型.为克服BP算法与粒子群算法(PSO)的缺陷,将L-M算法与PSO算法相融合的混合粒子群算法PSOLM应用于该神经网络模型的学习算法中.为避免PSOLM算法在全局最优值附近的搜索过程变慢,采用一种从PSO搜索到L-M搜索的启发式算法.仿真试验结果表明,与BP算法、PSOBP算法相比,该算法不仅对螺旋搅料器模型的精度和建模的效率有显著的提高,而且改善了PSO算法的全局寻优能力,提高了算法的收敛速度和计算精度.避免了PSO算法早熟现象的出现,为螺旋搅料器搅拌特性的建模提供一条新的有效解决途径.