论文部分内容阅读
上市公司财务预警模型受到不同配对比例的下采样影响较大,2007—2008年上市公司财务数据的分析结果表明:配对比例过高,ST公司的识别率太低;配对比例过低,模型识别结果变异太大,结果不可靠;而现代统计学中针对不平衡数据的统计方法 SMOTO方法和Bagging算法均能较好地克服样本比例不均衡的影响,上述数据的实证研究结果显示:基于上述两种方法的财务预警模型在测试集上对正常公司和ST公司都取得了较好的稳定识别率。