论文部分内容阅读
为了解决煤层含气量定量解释问题,将煤层测井数据与煤心解吸数据作为输入和输出参数,构建深度置信网络(DBN),进而预测煤层含气量。研究以甘肃合水地区测井数据为例,筛选出该地区120组煤层样品作为DBN样本分析数据。选择短源距自然伽马、自然伽马、密度、长源距自然伽马和浅侧向5条测井曲线,作为DBN的输入参数,煤层气含量作为DBN的输出参数,研究RBM数量和隐藏神经元数量对计算结果的影响。并通过概率统计法、BPNN、DBN和SVM计算了30组煤层的煤层气含量,比较不同方法的预测效果。结果表明:①受限玻尔兹曼机(