用于冷链的低温相变材料的研究进展

来源 :化工进展 | 被引量 : 0次 | 上传用户:HYB1976
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
相变材料(PCM)具有较高的储能密度,有利于能源的储存和高效利用.对于低温相变材料,其应用从相变温度为0℃至室温的空调和建筑等领域到零下的工业制冷和食品、药物等的运输储藏,非常广泛.本文从水溶液相变材料体系和非水相变材料体系两方面对冷链用相变材料进行了系统介绍,并从过冷、长期稳定性和导热等角度综述了近年关于冷链用相变材料的研究.指出对于水溶液相变材料体系存在的严重过冷及盐-水体系较强的金属腐蚀性,可通过使用合适的成核剂、改善相变材料对成核剂的浸润性、避免纳米粒子团聚及用不锈钢或聚合物材料封装等方法改善;对于非水相变材料体系,可通过引入高导热的纳米粒子和支撑材料,微胶囊化PCM等方法来解决有机物热导率较低的问题.关于纳米粒子的聚沉以及引入支撑材料和微胶囊化PCM导致的大量潜热损失问题,指出改善纳米粒子和支撑材料与PCM的亲和性是值得尝试的方向.
其他文献
为了明确玉米棒颗粒与四氢呋喃(THF)对整体煤气化联合循环(IGCC)合成气气体水合物生成的协同作用,在温度276.15K、初始压力为6.0MPa的静态反应条件下,通过实验研究了玉米棒颗粒+THF溶液体系中气体水合物的生成动力学过程,并确定了不同THF浓度溶液条件下水合物的生成诱导时间、气体消耗量、CO2分离效率及水合物的晶体结构.实验结果表明:玉米棒的存在会延长实验的稳定时间,且其压降幅度相较于不含玉米棒颗粒的体系更高;无论是否含玉米棒颗粒,诱导时间均在180s以内,且随着THF浓度上升到摩尔分数4.0
利用热重分析仪研究恒温煤气化是实验室常用的气化活性评价流程,但该实验中气体切换过程的影响却较少报道.本文以一种煤焦CO2气化反应为例,通过切换气体与全部采用CO2气体气化实验对比,分析气体切换步骤对恒温气化实验的影响,并结合在线质谱检测了切换过程中气体逸出规律.研究发现,存在切气步骤时,尽管CO2可快速扩散至反应区,但由于气体的置换过程并非简单的平推流,导致部分碳的气化是发生在变化着的反应性气体和惰性气体的混合气氛中.这极大地影响了煤焦样品的气化反应速率大小和趋势,进一步影响反应动力学模型的判断和选择,并
采用不同浓度的柠檬酸(HCA)对H-beta分子筛样品进行改性,通过XRD、SEM、TEM、FTIR、N2物理吸脱附、NH3-TPD及吡啶Py-IR等手段对改性分子筛进行了表征.实验结果表明,适宜浓度的柠檬酸改性不但没有破坏H-beta分子筛的骨架结构,而且在脱铝的同时兼具补铝功能.改性后的H-beta分子筛孔道更加畅通,虽然总酸量有所下降,但对烷基化有利的中强酸量和B酸含量却明显增加,催化活性增强.但柠檬酸浓度过高会脱除骨架铝,破坏晶格结构,导致催化活性降低.催化剂的甲苯叔丁基化活性评价表明,适宜的柠檬
流化催化裂化(FCC)是炼厂最重要的二次加工工艺,也是石油化工应用中丙烯的第二大来源.随着丙烯需求消费的不断增长,在FCC催化剂中添加增产丙烯助剂是一种灵活、高效提高丙烯收率的途径,其助剂主要由活性组分ZSM-5分子筛和基质组成.本文主要从活性组分ZSM-5分子筛和基质两方面分别介绍目前阶段增产丙烯助剂的研究现状,通过对ZSM-5分子筛的改性来提升活性组分的性能,重点综述了调变分子筛的酸度、改善孔结构及粒度和提高水热稳定性;分析了基质孔结构和酸性的梯度分布对助剂在FCC工艺中提高原料的转化、减少生焦和增产
对甲醇制烯烃(MTO)过程失活催化剂采用水蒸气再生不仅可以减少二氧化碳排放,而且能提高低碳烯烃选择性,具有很好的应用前景.本文针对工业MTO过程使用的SAPO-34分子筛催化剂,研究了再生时间对水蒸气再生过程的影响.采用XRD、NH3-TPD、TGA、FTIR、GC-MS以及N2物理吸脱附表征手段对再生催化剂样品的晶体结构、酸性、残炭性质以及结构参数进行了表征,并考察再生催化剂的MTO反应性能.结果表明,再生时间越长,再生催化剂上残炭量越低,其酸性、比表面积和孔结构等能较好地恢复,在MTO反应中表现出更长
采用浸渍法制备了结构型NiO-CeO2/γ-Al2O3复合载氧体,研究了Ni/Ce质量比对化学链重整制氢反应性能的影响.固定床反应器实验表明,随着Ni/Ce质量比的降低,氢气的选择性先升高后降低,比例为3:1时氢的选择性和氢产物浓度最高.循环实验测试表明,3:1载氧体在20个循环后仍保持催化活性,积炭量最低.XRD结果表明,加入CeO2后有固溶体形成,增加了氧空位,在一定程度上减弱了NiO与γ-Al2O3之间的相互作用,提高了活性物质的分散度.进一步分析XRD结果发现3:1载氧体粒径最小,更有利于制氢反应
低温回热材料的性能是制约深低温制冷机发展的关键因素之一.在10~30K温区,对比低温段回热器采用不锈钢丝网(SS)和SS与HoCu2混合填充两种方式的回热器损失、能量流分布及制冷性能.数值模拟表明,回热器采用纯SS填充时存在较大换热损失,而混填时流阻损失影响显著增大,随着制冷温度提高,回热器换热损失均能减小,而流阻损失有所增加.低温级脉管内能量流模拟结果表明,HoCu2填充时,回热器焓流较小,传输到冷端的PV功也较小.最后在主动调相的热耦合两级脉管上开展实验测试,结果显示,SS与HoCu2混合填充的低温级
采用等体积浸渍法制备了Pd、Cu-Pd改性的S-1催化剂,利用介质阻挡放电(DBD)等离子体反应器研究了甲烷无氧转化制低碳烯烃(C2~C4=)的性能,重点关注了乙烯的产量.探讨了Ar的添加和特定输入能量(SIE)对甲烷转化率以及产物分布的影响.实验结果表明,等离子体与催化剂协同催化与仅使用等离子体相比性能更优异,使乙烯选择性提高了3.1倍,C2~C4=的选择性提高了2.7倍;与S-1相比,Pd/S-1具有更高的乙烯选择性,这是因为在S-1上负载金属Pd有助于乙炔原位加氢生成乙烯;适宜的Pd负载量有利于提高
微波加热技术因其绿色环保、体积加热、选择性加热等优势,已被广泛应用于化工强化、金属冶炼、陶瓷烧结、食品加工等众多领域,但微波在反应器内普遍存在透波效果差、微波利用率低等问题.随着微波加热技术的不断发展,微波加热设备中透波材料的选用越来越受到大家的关注.本文主要针对透波材料在微波加热领域中的应用现状进行综述,对透波材料的种类进行简要介绍,分别从微波加热用容器和保温材料两方面进行论述.详细介绍了氧化物、氮化物、硅酸盐、磷酸盐等高温透波材料及聚四氟乙烯、玻纤增强树脂基、环氧树脂等中、低温透波材料的研究进展,并具
采用二氯甲烷(DCM)和丙酮(AC)组成二元溶剂体系,考察了二元溶剂体系对制备聚苯乙烯(PS)微球时泡沫的传输和微球性能的影响,并探讨了对应的作用机理.实验结果表明,随着AC质量分数的增加,体系的出泡温度升高,PS微球的平均粒径下降且粒径分布逐渐变窄,微球的结构由多孔逐渐演变为中空.这主要是由于AC对水具有一定的亲和性,会往连续相迁移,改变连续相的表面张力,并在油水界面形成一个AC/DCM的混合液膜层,该液膜层改变了溶剂挥发的过程,最终实现对微球粒径和结构的调控.