论文部分内容阅读
Pyrolysis of cyclohexane was conducted with a plug flow tube reactor in the temperature range of 873-973 K.Based on the experimental data,the mechanism and kinetic model of cyclohexane pyrolysis reaction were proposed.The kinetic analysis shows that overall conversion of cyclohexane is a first order reaction,of which the rate constant increased from 0.0086 to 0.0225 to 0.0623 s- 1 with the increase of temperature from 873 to 923 to 973 K,and the apparent activation energy was determined to be 155.0+1.0 kJ.mo1-1.The mechanism suggests that the cyclohexane is consumed by four processes:the homolysis of C-C bond (Path Ⅰ),the homolysis of C-H bond (Path Ⅱ) in reaction chain initiation,the H-abstraction of various radicals from the feed molecules in reaction chain propagation (Path Ⅲ),and the process associated with coke formation (Path Ⅳ).The reaction path probability (RPP) ratio of Xpath Ⅰ ∶ Xpath Ⅱ∶ XPath Ⅲ ∶ XPath Ⅳ was 0.5420 ∶ 0.0045 ∶ 0.3897 ∶ 0.0638 at 873 K,and 0.4336 ∶ 0.0061 ∶ 0.4885 ∶ 0.0718 at 973 K,respectively.