论文部分内容阅读
单幅图像雨雾去除是计算机视觉研究的热点之一,现有的去雨方法往往需根据雨的特性恢复图像,忽视了场景中的雾以及场景深处雨累积的影响。提出了一种新型单幅图像去雨雾方法,设计了一种基于先验知识的三阶段单幅图像去雨雾框架。首先,将深度图作为图像透射率的引导,利用暗通道先验知识对输入图像的低频部分去雾,然后,采用残差网络学习高频雨痕特征,最后,引入条件生成对抗网络(conditional generative adversarial network,cGAN),对图像局部细节进行精细化修复,cGAN对图像的空间