论文部分内容阅读
针对标准和声搜索(HS)算法易陷入局部最优、收敛精度不高的不足,提出了一种基于圆形信赖域(CTR)的新型和声搜索算法——CTRHS。该算法运用逐双音调一次性产生方式,在记忆思考环节交互式地采取面向圆形信赖域的集约化思考操作,在双音调微调环节利用当前和声记忆库中的最好或最差和声来确定微调带宽,并且以新生成和声直接替换当前和声记忆库中最差和声来实现和声记忆库的更新。通过在9种标准测试函数上对CTRHS算法进行实验验证和算法性能对比,结果表明CTRHS算法在解质量、收敛性能上优于文献中已报道的7种HS改进