基于迁移学习的地球物理测井储层参数预测方法研究

来源 :地球物理学报 | 被引量 : 0次 | 上传用户:aqcnbbz1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着大数据和机器学习的成熟和推广应用,人工神经网络在地球物理测井预测储层参数中得到重视.本文引入迁移学习进行测井储层参数预测,以孔隙度预测神经网络模型和孔隙度含水饱和度联合预测神经网络模型为基础模型,分别以渗透率及含水饱和度预测作为目标任务进行迁移学习,以提升储层参数预测效果和效率.文中详细阐述了基于迁移学习的测井储层参数预测方法,并使用64口井的测井数据进行储层参数预测效果分析.结果 表明,使用迁移学习后,渗透率模型预测效果最高可以提升58.3%;含水饱和度模型预测效果最高可以提升近40%,且最大可以节省60%的计算资源;以孔隙度预测模型为基础模型时更适合使用参数冻结的训练方式,以孔隙度含水饱和度联合预测模型为基础模型时更适合使用参数微调的训练方式.
其他文献