基于邻域粗糙集和Relief的弱标记特征选择方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:fbyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在多标记学习与分类中,现有邻域粗糙集特征选择算法若将样本的分类间隔作为邻域半径,则会出现分类间隔过大导致分类无意义、样本距离过大容易造成异类样本和同类样本失效,以及无法处理弱标记数据等情况.为解决这些问题,提出一种基于多标记邻域粗糙集和多标记Relief的弱标记特征选择方法.首先,引入异类样本数和同类样本数来改进分类间隔,在此基础上定义邻域半径,构造新的邻域近似精度与多标记邻域粗糙集模型,并有效度量边界域引起的集合不确定性.其次,利用迭代更新权重公式填补大部分缺失标记信息,将邻域近似精度与互信息相结合,以构造新的标记相关性,填补剩余的缺失标记信息.然后,使用异类样本数和同类样本数,以构造新的标记权重和特征权重计算公式,进而提出多标记Relief模型,并将其应用于多标记特征选择.最后,结合多标记邻域粗糙集模型和多标记Relief算法,设计一种新的弱标记特征选择算法,以处理带有缺失标记的高维数据,并有效地提升多标记分类性能.在11个公共多标记数据集上进行仿真实验,结果验证了所提出的弱标记特征选择算法的有效性.
其他文献
复杂社会系统建模是社会计算面临的首要问题.面向社会计算领域的建模流程与需求,提出了一种模型深度集成架构,称为POV框架.该框架由物理层、覆盖层和虚拟层3部分组成,提供了模型的组织、表达和集成方法.基于该方法搭建了面向社会计算数据模型交互共享集成平台,为研究者们提供包括数据资源、分析工具和建模仿真计算环境的社会计算实验平台.应用示例证明了该平台能够为研究者进行社会计算研究提供有效支撑.
人工智能技术的不断发展使其在司法方面的应用逐渐增多,并引起广泛关注.具体来说,人工智能已经在合同审查、智慧法院等应用场景中崭露头角,相比传统人工,人工智能的高效率表现展示了其在司法领域的巨大应用潜力.但在其他应用场景,如智能司法裁判,虽然国内外有一定尝试,并取得了一些成果,但仍面临着数据样本量不足、算法与待解决实际问题匹配度不够的问题,以及算法过程不够透明等方面的质疑.文中围绕现有法律人工智能的相关工作,探索了人工智能可能带来的司法流程上的巨大变革,并对人工智能目前在智能裁判中遇到的数据和算法方面的问题是
随着互联网金融行业的迅速发展,面对海量数据,传统信用风险评估面临着挑战.信用评估中样本类别不均衡,且特征冗余度高,成为影响目前评估分类精度的关键因素.为了解决以上问题,提出了一种基于灰狼优化算法同步处理样本欠采样与特征选择的方法.该方法将分类器的性能作为灰狼优化算法的启发式信息,然后进行智能搜索,以得到最优样本与特征集的组合,并在原始灰狼算法中引入禁忌表策略,避免算法陷入局部最优.实验表明,该方法相较于其他方法有较大改进,在不同数据集上的表现均证明了该方法能够有效解决样本不均衡问题,降低特征空间维度,同时