论文部分内容阅读
针对模仿学习中运动的表征和泛化问题,提出了交叉熵优化算法,用于混合模型参数的推断.该算法易于实施、计算效率高.更重要的是,它能够自动确定混合模型中最优成分的个数.为了产生泛化的运动轨迹,提出了交叉熵回归算法.为了进一步提高这种算法对动态环境的适应能力,引入了任务参数化的概念并提出了任务参数交叉熵回归算法.最后设计了一个新颖的锤击任务,验证了所提出的算法在理论上的正确性和优越性.基于机器人物理仿真软件Gazebo的仿真实验表明了算法在实际应用中的可行性.