卡尔曼滤波结合遗传算法的矿井图像去噪算法研究

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:ghostKill1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高煤矿井下图像采集的质量,通过研究分析卡尔曼滤波的初状态值选取与遗传算法来优化卡尔曼滤波,提出一种新的图像去噪算法——GAK(Genetic Algorithm Kalman).分析了图像噪声的成因与四种经典滤波;研究设计了卡尔曼滤波的初状态值选取;详细阐述了GAK原理,以及GAK求解步骤;运用MATLAB对GAK的参数值进行整定,并对井下椒盐噪声的图像进行仿真降噪.结果表明:GAK对井下椒盐噪声有着较好的抑制效果.
其他文献
现有大多数工作都是通过智能电表数据独立地预测单户特性,而忽略了不同特性的联合分析,对此构建一种多任务学习模式,判别多任务间关系.该模式将每个特征看作一个独立的任务,并尝试同时预测多个家庭特征.主要解决了不同特征之间关系的嵌入结构问题和原始训练数据中存在冗余特征问题.模型通过获取任务协方差矩阵捕捉不同特征之间的内在联系,得到一个简单而鲁棒的权重矩阵.以爱尔兰用户智能电表数据为例,验证了算法的有效性.