论文部分内容阅读
粗糙集的不确定性度量在知识获取中扮演着非常重要的角色。在邻域粗糙集理论中,当前不确定性度量方面的研究工作主要专注于度量单个知识空间的不确定性及其随粒度变化的单调性规律,其仍存在以下缺点:1)邻域粗糙集不确定性来自于邻域粒中属于目标概念的元素和不属于目标概念的元素,当前的方法没有同时考虑每个邻域信息粒的这两部分;2)不能反映不同知识空间对目标概念刻画能力的差异性;3)由于当前的知识距离包含了粒度划分的信息,已有方法在一些应用场合下不够准确,例如属性约简中的知识启发式搜索及其粒度选择。对此,文中首先构建了一种