论文部分内容阅读
讨论了一类具有有界可变时滞分离变量系统平衡点的全局指数稳定性.在所给函数为Lipschitz连续的情况下,利用Lyapunov 函数方法并结合Halanay时滞微分不等式,分别构造适当的连续但不一定可微的数量或向量Lyapunov函数和二次型Lyapunov函数,获得了几个保证此类分离变量型时滞系统的平衡点为全局指数稳定的时滞相关和时滞无关的代数判据.这些判据将问题化为代数不等式或M矩阵,可以直接根据系统方程进行检验,便于实际应用.