论文部分内容阅读
识别软件中的关键实体对于人们理解软件,控制和降低维护费用具有重要意义.然而现有的工作基本都是针对关键类识别的,针对关键包、方法/属性等的研究甚少;同时现有的工作也未能揭示关键类与软件外部质量属性间的关系.为丰富现有的工作,本文提出了一种基于加权PageRank算法的关键包识别方法.该方法用加权有向软件网络模型抽象包粒度软件系统,提出新度量PR(PackageRank)从结构角度量度节点重要性,并引入加权的PageRank算法计算该度量值.数据实验部分以六个开源Java软件为例,分析了包的PR值与常用复杂网