论文部分内容阅读
线性回归分类器(LRC)在人脸识别上呈现出了优越的性能,然而,随着每类的训练样本数量增大,LRC的分类速度变得很慢.除此之外,LRC还有一致命的弱点:对大样本问题束手无策,即当每类用于训练的样本数量大于样本的维数时,LRC无法工作.解决以上问题的一个行而有效办法是对LRC作局部化处理.可以对LRC作了两类局部拓展:一是基于K最近邻的线性回归分类器(KNN-LRC).KNN-LRC借助KNN算法对每类训练的样本作了筛选,从而避免了大样本问题的出现,但却受到近邻参数选择的困扰.二是在此基础上进一步提出了