论文部分内容阅读
基因表达谱中信息基因选择是有效建立肿瘤分类模型的关键问题。肿瘤基因表达谱具有高维小样本、噪声大且存在大量无关和冗余基因等特点。为了获得基因数量尽可能少而分类能力尽可能强的一组信息基因,提出一种基于对称不确定性和邻域粗糙集的肿瘤分类信息基因选择SUNRS方法。首先利用对称不确定性指标评估信息基因的重要度,以剔除大量无关和冗余基因,获取信息基因的候选子集;然后利用邻域粗糙集约简算法对信息基因候选子集进行寻优,获得信息基因的目标子集。实验结果表明,SUNRS方法能够用较少的信息基因获得更高的分类精度,从而既能改