Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macrooptical

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:Aslaen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Raman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface- enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA. We describe various interactions of light with nano/microstructures, localized surface plasmon, surface plasmon polariton, and lightning-rod effect. Their coupling effects can significantly increase the surface sensitivity by designing nanoparticle–nanoparticle and nanoparticle–substrate configuration. As the nano/microstructures have specific optical near-field and far-field behaviors, we focus on how to systematically design the macro-optical systems to maximize the excitation efficiency and detection sensitivity. We enumerate the key optical designs in particular ATR-based operation modes of directional excitation and emission from visible to IR spectral region. We also present some latest advancements on scanning-probe microscopy-based nanoscale spectroscopy. Finally, prospects and further developments of this field are given with emphasis on emerging techniques and methodologies.
其他文献
Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical stru
期刊
Optical microcavities play a significant role in the study of classical and quantum chaos. To date, most experimental explorations of their internal wave dynamics have focused on the properties of their inputs and outputs, without directly interrogating t
期刊
Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (S
期刊
Short Bio: Dr., Prof. John Dudley received his Ph.D. from the University of Auckland and is currently a Pro-fessor at the University of Franche-Comté in Besan?on, France. He is a Fellow of OSA, SPIE, IEEE, EOS, and an Honorary Fellow of the Royal Society
期刊
A nonlinear hologram enables to record the amplitude and phase of a waveform by spatially modulating the second order nonlinear coefficient, so that when a pump laser illuminates it, this waveform is reconstructed at the second harmonic frequency. The con
期刊
The intra-cavity electro-magnetic field distribution in a microdisk resonator can be visualised by inducing a phase shift via a scanning probe beam.
期刊
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors. However, a long-lasting challenge unaddressed is how to achieve ultrahigh
期刊
Highly sensitive force measurements of a single microscopic particle with femto-Newton sensitivity have remained elusive owing to the existence of fundamental thermal noise. Now, researchers have proposed an optically controlled hydrodynamic manipulation
期刊
Photobiomodulation, by utilizing low-power light in the visible and near-infrared spectra to trigger biological responses in cells and tissues, has been considered as a possible therapeutic strategy for Alzheimer\'s disease (AD), while its specific mech
期刊
We demonstrate a photonic analog of twisted bilayer graphene that has ultra-flat photonic bands and exhibits extreme slow-light behavior. Our twisted bilayer photonic device, which has an operating wavelength in the C-band of the telecom window, uses two
期刊