Cassava Genetic Transformation and its Application in Breeding

来源 :Journal of Integrative Plant Biology | 被引量 : 0次 | 上传用户:gjj19901005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As a major source of food,cassava(Manihot esculenta Crantz) is an important root crop in the tropics and subtropics of Africa and Latin America,and serves as raw material for the production of starches and bioethanol in tropical Asia.Cassava improvement through genetic engineering not only overcomes the high heterozygosity and serious trait separation that occurs in its traditional breeding,but also quickly achieves improved target traits.Since the first report on genetic transformation in cassava in 1996,the technology has gradually matured over almost 15 years of development and has overcome cassava genotype constraints,changing from mode cultivars to farmer-preferred ones. Significant progress has been made in terms of an increased resistance to pests and diseases,biofortification,and improved starch quality, building on the fundamental knowledge and technologies related to planting,nutrition,and the processing of this important food crop that has often been neglected.Therefore,cassava has great potential in food security and bioenergy development worldwide. As a major source of food, cassava (Manihot esculenta Crantz) is an important root crop in the tropics and subtropics of Africa and Latin America, and serves as raw material for the production of starches and bioethanol in tropical Asia. Cassava improvement through genetic engineering not only overcomes the high heterozygosity and serious trait separation that that in its traditional breeding, but also quickly achieves improved target traits. Since the first report on genetic transformation in cassava in 1996, the technology has gradually matured over almost 15 years of development and has overcome cassava genotype constraints, changing from mode cultivars to farmer-preferred ones. Significant progress has been made in terms of an increased resistance to pests and diseases, biofortification, and improved starch quality, building on the fundamental knowledge and technologies related to planting, nutrition , and the processing of this important food crop that has often been neglected.Therefore, cass ava has great potential in food security and bioenergy development worldwide.
其他文献
溶剂活度用于描述聚合物/溶剂凝聚体系中溶剂的“有效浓度”,其数值等于挥发平衡时溶剂的相对蒸气压,即A=p/po,A的取值范围在0到1之间。本学位论文发展了聚合物/溶剂体系的溶
学位
蛋白和核酸是构成生物体和维持生命的重要部分。蛋白是一些疾病发生和治疗的关键环节,因而也就成为药物设计的重要靶分子。本文选择碱性成纤维细胞生长因子(bFGF)作为研究对
学位
离子液体又称室温离子液体或室温熔融盐,是完全由特定的阳离子和阴离子构成的,其熔点一般都在100℃以下。离子液体具有很多传统溶剂和电解质不能比拟的突出优点,如低沸点;可忽略
薄膜扩散梯度(Diffusive Gradients in Thin-Films technique,DGT)技术已经被广泛地应用于水、土壤、沉积物环境中重金属有效态的原位采样和测量。DGT技术的主要特点是能够测
在过去几十年间,在超分子化学和材料科学中的有机金属框架结构的合成与调查引起了人们的极大的兴趣,尤其是它们在分子识别,气体吸附,离子交换和催化等方面的潜在应用。至今为
嵌段共聚物由于嵌段之间的热力学不相容性会导致微相分离的发生,当其中含有可结晶嵌段时,相行为将变得更为复杂。传统的线型嵌段共聚物已经在改善共混体系界面相容性、纳米技
学位
可生物降解形状记忆聚合物在生物医学等领域具有很高的潜在应用价值,因此深入研究此类材料的微结构以及与水分子的相互作用,建立微观结构与性能的内在关系以及水渗透微观机理
学位
镁合金具有低密度、高比强度和易加工特点,作为结构材料广泛地应用于工业领域。此外,镁还具有电极电位低、电荷密度大和易腐蚀等物理/化学特性,作为功能材料应用在许多方面。
学位
等规聚丙烯(iPP)自1957年合成以来,就因其优异性能得到了广泛应用。但是,iPP也存在模量和强度低、成型收缩率大等缺点,限制了其在家电、汽车等领域的应用。因此,iPP改性成为基础
梳状高分子是一种分子结构不同于传统线性高分子的特殊软物质,对其聚集态结构和形态的深入研究不仅可以增加对梳状高分子结构和物理化学性质的理解,而且还可揭示现代高分子物