论文部分内容阅读
在实验室条件下研究了碳源(添加CO2)和氮源(添加Na NO3)加富对大型海藻脆江蓠(Gracilaria chouae)生长及其生化组成的影响。设置碳源加富(800μL/L CO2)和对照(400μL/L CO2)2个碳源处理组,氮源加富(100μmol/L、300μmol/L和500μmol/L 3NO?-N)和对照(10μmol/L3NO?-N)4个氮源处理组,每个处理3个重复。实验共进行10 d,测定不同处理组藻体的生长及可溶性总糖(SS)、可溶性蛋白质(SP)、藻红蛋白(PE)、叶绿素a(Chla)、总碳(TC)和总氮(TN)含量的变化。结果表明,碳源和氮源加富都会促进脆江蓠的生长,在800μL/L CO2和100μmol/L 3NO?-N处理组,脆江蓠的瞬时生长率(SGR)最大(11.70%/d);高浓度CO2会降低藻体SP、PE和Chla的含量,但提高了SS的含量;随着硝态氮浓度的增大,PE和SP含量逐渐增加,而SS含量逐渐降低,Chla含量没有明显变化。藻体的TN含量随着硝态氮浓度的增加而逐渐提高,而TC和C/N比值则呈现逐渐降低的趋势,并且藻体的TN和TC含量呈现出显著的负相关关系(P<0.05)。本实验证实添加碳、氮会引起脆江蓠生长和生化组成的变化,但其能耐受较高的CO2浓度和氮浓度。
The effects of carbon source (added CO2) and nitrogen source (added NaNO3) enrichment on the growth and biochemical composition of giant seaweed (Gracilaria chouae) were studied under laboratory conditions. Two carbon source treatments of carbon source enrichment (800μL / L CO2) and control (400μL / L CO2) were set up. Nitrogen enrichment (100μmol / L, 300μmol / L and 500μmol / L 3NO- 10μmol / L NO-N) four nitrogen source treatment groups, each processing three replicates. The experiment was conducted for 10 days to determine the growth and the contents of total soluble sugar (SS), soluble protein (SP), phycoerythrin (PE), chlorophyll a (Chla), total carbon TN) content changes. The results showed that both carbon source and nitrogen source could promote the growth of R. crispus, and the highest instantaneous growth rate (SGR) was 11.70% / d in 800μL / L CO2 and 100μmol / L 3NO? -N treatment groups ). High concentration of CO2 decreased the content of SP, PE and Chla, but increased the content of SS. With the increase of nitrate concentration, the content of PE and SP gradually increased while the content of SS decreased but the content of Chla did not obvious change. The TN content of algae increased with the increase of nitrate nitrogen concentration, while the TC and C / N ratios showed a decreasing trend, and the TN and TC contents of alga showed a significant negative correlation (P <0.05 ). The experiment confirmed that the addition of carbon and nitrogen will cause changes in the growth and biochemical composition of B. crispus, but it can tolerate higher concentrations of CO2 and nitrogen.