论文部分内容阅读
手势是人机交互的重要手段之一。基于视觉的手势识别具有非接触式交互的特点,在人工智能领域得到越来越广泛的应用。然而,受到传统二维光学摄像头的限制,采集到的手势图像质量极易受到光照和杂散背景的影响,这给手势的提取带来了重大挑战,严重制约了基于视觉的手势识别的实用化进程。近年来,深度摄像技术的兴起,为解决上述问题带来了新的机遇。在深度数据的辅助下,基于视觉的手势识别新方法层出不穷,识别的准确度不断提升,有力地促进了基于视觉的手势识别系统的实用化进程。在此背景下,从数据的角度出发,分深度数据的获取、常用手势