论文部分内容阅读
针对2型糖尿病(T2DM)并发症的诊断预测问题,传统检测方法主要通过血液和尿液检查来预测,这些方法既耗时又不能进行早期预测.目前,由于糖尿病发病率升高以及医疗数据的大幅增加,机器学习算法迅速发展为检测及诊断糖尿病的有效方法.用机器学习算法分析临床指标,探究2型糖尿病并发症的影响因素,构建并发症预测模型,可以很好地实现糖尿病并发症预防.通过介绍近年来预测及诊断糖尿病并发症的机器学习算法,对贝叶斯网络、随机森林、支持向量机以及反向传播(BP)神经网络4种机器学习优化算法分别进行概括讨论,以期提高对糖尿病及其预测模型的理解并降低疾病风险.