论文部分内容阅读
Interactions between microwaves and certain catalysts can lead to efficient, energy-directed convergence of a relatively dispersed microwave field onto the reactive sites of the catalyst, which produces thermal or discharge effects around the catalyst. These interactions formhigh-energy sites (HeS) that promote energy efficient utilization and enhanced in situ degradation of organic pollutants. This article focuses on the processes occurring between microwaves and absorbing catalysts, and presents a critical review of microwave-absorbing mechanisms. This article also discusses aqueous phase applications of relevant catalysts (ironbased, carbon-based, soft magnetic, rare earth, and other types) and microwaves, special effects caused by the dimensions and structures of catalytic materials, and the optimization and design of relevant reactors for microwave-assisted catalysis of wastewater. The results of this study demonstrate that microwave-assisted catalysis can effectively enhance the degradation rate of organic compounds in an aqueous phase and has potential applications to a variety of engineering fields such as microwave-assisted pyrolysis, pollutant removal, material synthesis, and water treatment.