论文部分内容阅读
传统的CBR系统采用平面结构,系统在运行过程中不断学习,范例库将变得越来越大,当范例数超过某一预设的上界时,就会出现“沼泽问题”。为了解决这个问题,该文提出了基于商空间模型的CBR系统,采用分层递阶的立体结构,在运行阶段将惰性学习算法与积极学习算法相结合。实验表明利用本方法构造的CBR系统实现E-mail分类预测时,系统的性能和有效性都得到了很大的提高。