【摘 要】
:
车道线检测是无人驾驶任务中最重要的模块之一.由于车道线具有独特的结构,且容易受到各种各样复杂环境(比如光线、遮挡、模糊等)的影响,因此车道线检测也是一项很具有挑战性的任务.传统的卷积神经网络(CNN)难以直接学习到精细的车道线空间特征,本文使用空间特征聚合模块对CNN提取的特征在空间维度进行融合增强,为级联的车道线预测器提供了丰富的空间特征信息.实验证明,空间特征聚合模块通过聚合水平和垂直方向的特征图获取精细的全局信息,在多种复杂环境下都能提升车道线检测算法的性能,且不会影响检测的速度.
【机 构】
:
中国科学技术大学 信息科学技术学院, 合肥 230026
论文部分内容阅读
车道线检测是无人驾驶任务中最重要的模块之一.由于车道线具有独特的结构,且容易受到各种各样复杂环境(比如光线、遮挡、模糊等)的影响,因此车道线检测也是一项很具有挑战性的任务.传统的卷积神经网络(CNN)难以直接学习到精细的车道线空间特征,本文使用空间特征聚合模块对CNN提取的特征在空间维度进行融合增强,为级联的车道线预测器提供了丰富的空间特征信息.实验证明,空间特征聚合模块通过聚合水平和垂直方向的特征图获取精细的全局信息,在多种复杂环境下都能提升车道线检测算法的性能,且不会影响检测的速度.
其他文献
API相关的知识通常分散隐含在多个信息源,如API参考文档、问答网站等非结构化的文本中,不利于API的查询与检索.为此,提出一种多源信息融合的API知识图谱构建方法,以提高API检索的效率.API参考文档从设计者角度描述了API的功能和结构,Stack Overflow问答网站从用户角度提供了API的使用目的及应用场景,二者互为补充,可共同为API查询与检索提供支持.通过分析API参考文档,抽取API和领域概念作为实体,构建API和领域概念之间的关联关系;利用Stack Overflow问答网站,抽取问答
为克服传统BP神经网络(BP Neural Network,BPNN)在销售预测中,预测精度低、收敛速度慢的缺点.提出了一种基于改进免疫遗传算法(Improved Immune Genetic Algorithm,IIGA)优化BP神经网络的销售预测模型.改进的免疫遗传算法提出了新的种群初始化方式、抗体浓度的调节机制及自适应交叉算子、变异算子的设计方法,有效的提高了IIGA的收敛能力和寻优能力.并用IIGA优化BPNN的初始权值和阈值,改善网络参数的随机性导致BPNN输出不稳定和易陷入局部极值的缺点.以某
人工智能促进了风控行业的发展,智能风控的核心在于风险控制,信贷违约预测模型是解决这一问题必须倚靠的手段.传统的解决方案是基于人工和广义线性模型建立的,然而现在通过网络完成的交易数据,具有高维性和多重来源等特点,远远超出了现有模型的处理能力,对于传统风控提出了巨大的挑战.因此,本文提出一种基于融合方法的可解释信贷违约预测模型,首先选取LightGBM、DeepFM和CatBoost作为基模型,CatBoost作为次模型,通过模型融合提升预测结果的准确性,然后引入基于局部的、与模型无关的可解释性方法LIME,
本文基于祖冲之(ZUC)算法,设计实现了一种可分离加密图像可逆水印算法,算法中内容所有者先进行图像标记并生成位置图,然后使用ZUC加密算法加密载体图像;水印嵌入者得到加密图像后根据位置图将水印信息嵌在选中像素的第7位或第8位;接收者根据加密密钥和嵌入密钥可以得到直接解密图像、水印信息和恢复图像.算法使用ZUC算法对图像进行加解密,很好地保证算法的安全性;在嵌入水印信息之前对图像进行标记,将水印信息嵌在选中的位置上;接收者在利用相邻像素相关性基础上通过一种自适应差值算法实现水印提取和图像恢复,保证恢复的载体