论文部分内容阅读
复杂产品有限元分析(Finite Element Analysis,FEA)费用很高,给多目标优化(Multi-ObjectiveOptimization,MOO)带来很大困难.提出一种人工神经网络(Artificial Neural Network,ANN)辅助的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization,MOPSO)处理这类计算密集的设计问题:以基于噪声的虚拟样本丰富ANN的训练样本集,通过虚拟样本的控制参数和ANN模型参数的协同优化提