论文部分内容阅读
目的为了得到一种基于多相关系数分组二阶隐马尔可夫模型(second-or-der HMM:HMM2)的学习算法。方法最大似然准则,Lagrange乘子法。结果给出了在观测噪声和马尔可夫链不相互独立条件下二阶隐马尔可夫模型(second-or-der HMM:HMM2)的结构,获得了在多观测序列不相互独立的情况下HMM2的Baum-Welech学习算法。结论为得到充足数据,以对所有参数可靠估计,必须使用多观测序列。所获算法避免了直接计算条件概率的困难,考虑了训练序列间的相关性,故使计算过程更为便捷,在观测序