论文部分内容阅读
为了制备高输出功率的半导体激光器,设计了非对称超大光腔波导结构,其中大光腔结构用以提高器件的灾变性腔面烧毁(COMD)水平,非对称波导则抑制高阶模的激射,并分析了非对称波导层厚度的理论优化值。优化了有源区的金属有机物化学汽相沉积(MOCVD)外延生长条件,结合管芯电极制备及腔面镀膜等工艺条件,制备了腔长为4mm的2μm超大光腔端面发射980nm半导体激光器管芯。在室温、注入电流为30A且未采取任何主动散热措施的条件下,器件输出功率达到23.6W,未出现COMD。非对称波导保证了垂直方向仅有基模激射,且超大光腔的采用使得垂直远场发散角只有24°。研究结果表明,非对称超大光腔结构是制备高功率半导体激光器的有效途径。
In order to fabricate high output power semiconductor lasers, an asymmetric large cavity waveguide structure is designed, in which a large cavity structure is used to improve the device’s catastrophic cavity surface burnout (COMD) level while an asymmetric waveguide suppress high mode lasing and The theoretical optimization of asymmetric waveguide layer thickness is analyzed. Optimized the MOCVD epitaxial growth conditions in the active region, and combined with the fabrication conditions of the die electrode and the cavity surface coating, a 2μm large cavity end-emitting 980nm semiconductor laser with a cavity length of 4mm was fabricated . At room temperature, the injection current of 30A and did not take any active cooling measures under the conditions of device output power reached 23.6W, COMD does not appear. Asymmetric waveguide to ensure that only the fundamental mode vertical laser, and the use of large optical cavity so that the vertical far-field divergence angle of only 24 °. The results show that asymmetric large cavity structure is an effective way to fabricate high power semiconductor lasers.