论文部分内容阅读
通过分析传统基于概率度量的K邻近置信度评估方法,提出一种基于最大差距的置信度评估方法,并在UCI数据集上对两种方法进行对比实验.实验结果表明,基于最大差距的置信度评估方法在宏平均召回率、宏平均精度及所用时间上均优于K邻近置信度评估方法,从而可进一步优化半监督分类学习中数据样本的置信度评估.