改革开放天地宽 砥砺奋进正当时

来源 :商洛日报 | 被引量 : 0次 | 上传用户:bblp520a
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
功能核酸主要包括核酸适体和核酸酶。与传统的核酸以线性序列形式作为遗传信息载体不同,功能核酸利用分子内作用力折叠成稳定的三维结构,并通过该高级结构发挥结合配体和催化的功能。核酸适体是一类具有靶标识别功能的单链寡核苷酸,研究者们已经筛选获得了特异性结合小分子、蛋白、细菌、病毒及细胞等靶标的高亲和力核酸适体,应用在分子检测、蛋白分离、免疫调控、药物递送等多个领域。核酸酶是一类具有催化活性的单链核酸分子,
自从1911年Onnes发现超导现象以来,无论是基础研究层面还是应用层面,超导都受到了极大的关注。而强关联体系作为凝聚态物理中比较核心的一部分,自然也是人们关注的重点。具有强关联性质的超导体系,包括铜氧化物超导体,铁基超导体以及重费米子超导体等等,其机理远远不是传统的BCS理论能够完美解释的。压力作为一种干净的电子调控方式,既能调节电子态的关联强度,同时也是超导相图中不可或缺的自变量,自然是研究超
量子色动力学(QCD)是描述强相互作用的基本理论。QCD在低能区域有两大非微扰特性:色禁闭与手征对称性的动力学破缺,这些都使其在低能区有着极其丰富的相结构。在高温,高密等极端条件下,强相互作用物质可能会发生手征相变和出现超流现象。本文先简单地介绍了描述强相互作用系统所运用的有效理论NJL模型以及采用的自洽平均场近似方法,并阐述了所进行的研究的背景及意义。紧接着,在第三章中,我们采用自洽平均场近似方
微塑料作为一种新兴污染物,由于其粒径较小且性质稳定,并能对水生生物产生毒性效应,近几年得到了越来越多的研究和关注。排放到水环境中的微塑料颗粒经过水解、光氧化、热氧化、生物降解和机械破碎等风化作用后,其表面形态和理化性质均会发生不可逆的变化,从而产生更高的环境危害和生态风险。微塑料在众多的风化途径中,光老化过程当前被认为是影响微塑料理化性质变化最主要的途径,通过影响微塑料的分子排列改变微塑料的机械性
农田是农业生态系统的重要组成部分,在人类的生产生活中提供了重要保障。随着我国社会经济及农业的不断发展,化肥施用量大幅增加。然而,农田长期过量的施肥,不仅降低了作物对氮肥的利用效率,而且还造成了土壤的氮素超载,进而引发了一系列的生态环境问题。关注农田氮素的迁移转化和循环过程,并进一步揭示微生物驱动的氮素损失过程机制及贡献,对评价与预测农田生态系统服务功能变化、管理决策等至关重要。微生物驱动的氮素损失
第一章基于正常对照脑功能连接的模块划分背景:非任务状态下人脑左右运动皮层的血氧水平依赖磁共振成像(blood oxygenation level dependent,BOLD)信号在0.01-0.08Hz频段中显著相关。这反映了在静息态下,大脑的很多区域之间在仍然在进行着信息交流,这种BOLD时间信号的相关性就是功能连接(functionl connectivity,FC)。近年来,研究者将功能连
恒星形成活动在星系的形成与演化过程中起到重要作用。目前我们对于恒星形成的一些细节问题远非完全理解。特别地,虽然最近取得了一些重要的进展,但是磁场在恒星形成过程(尤其是早期阶段)中起到的作用仍处于争论之中。另外,目前大质量外向流的驱动机制也并不确定。在本论文中,我们使用高灵敏度毫米/亚毫米偏振观测数据来对处于早期演化阶段的小质量恒星形成区和大质量恒星形成区中的磁场进行了个例研究。我们还根据三维数值模
金、银等贵金属纳米材料具有显著的局域表面等离子体共振性能,该共振使得纳米晶体的表面产生很强的局域电场,因此在表面增强拉曼散射、荧光、生物传感、成像、光热治疗及催化领域具有广泛的应用前景。在贵金属纳米材料中,银纳米粒子在300 nm到1200 nm的光谱范围内具有出色的共振性能,但是由于其生物毒性高,化学与物理稳定性欠佳,限制了其在生物医学相关领域的应用。金纳米颗粒细胞毒性低,化学与物理稳定性好,适
新冠疫情对全球和中国产业链的影响正在逐步显现:短期来看,主要表现为发达经济体秩序停滞造成我国进出口产业链断裂、外部需求萎缩等;中长期来看,全球回归内向化倾向和经济全球化倒退则可能动摇现有的产品内分工体系。中国作为维护全球化的重要力量,在后疫情时代要从帮扶广大中小微企业复工复产,以维护全球供应链稳定。既要努力尽快恢复我国产业链中断的部分,从战略上又要致力于形成以我为主的全球价值链和国内价值链,尤其是
氧气还原反应(ORR)是质子交换膜燃料电池(PEMFC)阴极的重要电化学反应,一般需要贵金属铂来催化。而ORR缓慢的反应动力学要求高载量的铂才能达到实用要求,从而限制了PEMFC大规模商业化应用。过渡金属-氮-碳(TM-N-C)材料,特别是铁-氮-碳(Fe-N-C)体系,以其活性不断逼近商用铂催化剂而最有望取代铂。而该类催化剂实用化最大的瓶颈是在酸性介质中较差的耐久性,因此深入研究其失活机制,提升