陕西捕“碳”用“碳”降“碳”

来源 :陕西日报 | 被引量 : 0次 | 上传用户:langguoji
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
机器翻译是自然语言处理的主要分支之一,在促进政治、经济、文化交流等方面起着重要作用.目前汉藏机器翻译质量还有待提高,汉文到藏文的译文中容易出现语法错误,尤其普遍存在藏文虚词的翻译错误.分析汉藏机器翻译译文中的藏文虚词错误类型,并究其自动纠错方法是提高汉藏机器翻译性能最有效的方法.在分析汉藏机器翻译译文中虚词错误类型的基础上,利用大规模藏文文本对Bert进行预训练.然后面向汉藏机器翻译译文中的虚词错误类型,针对性的对Bert预训练模型进行微调,以完成一种面向汉藏机器翻译后处理的Bert藏文虚词纠错模型的训练
碳捕获、利用与封存(CCUS)具有巨大的减排潜力,是应对全球气候变化的关键技术之一,已经引发全球各经济体的高度重视,但成本较高等因素决定了其应用场景有待进一步丰富。本文阐述了CCUS对于碳减排的重要性,从技术成熟度入手分析了CCUS的减排潜力,探讨了CCUS的商业模式、项目数量和参与主体,就CCUS应用提出了对策建议。
为了及时检测出装配式建筑钢结构中的缺陷,以及在长时间使用过程中产生的裂纹,保证其在工程应用过程中的安全性能,提出了一种热像图增强的结构损伤检测方法.首先对装配式建筑钢结构检测机理进行详细的分析,当存在结构损伤时,通过一维解析方法构建损伤温度的数学模型,同时对加热过程以及瞬态加热过程进行分析,构建建筑钢表面温度分布和边缘温度分布的数学模型.采用多层小波分解处理方法,对热像图中的编织信息和背景干扰进行去除,基于Mallat算法求解出离散信号的小波变换递归方程.最后通过Matlab软件将热像图转换成矩阵,经过归
针对传统文本分类方法中需要手动提取特征和分类进而导致分类准确率不高的问题,提出一种结合图卷积神经网络和注意力机制的文本分类方法.方法首先建立整个语料库的大型文本图,然后将文本图的邻接矩阵和特征矩阵输入到图卷积神经网络中,最后网络输出与注意力机制相结合,利用注意力机制中Self-Attention机制的Query矩阵,Key矩阵和Value矩阵计算Attention值,充分学习文本表示,不断调整网络的输出,最终提高文本分类的准确率.在数据集上的仿真结果表明,所提出的方法与传统文本分类方法相比,其准确率较高.