论文部分内容阅读
在基于有界变差的图像处理领域,很多问题可以表示为求解两个可分离的凸函数的最小化问题,近年来该问题得到了广泛研究与应用.本文从原始对偶不动点算法的观点提出一系列的算法求解两个可分离的凸函数的最小化问题,问题中一个函数为凸函数和线性变换的复合,一个函数的梯度是Lipschitz连续的.所提出的算法具体包括基于邻近算子的原始对偶不动点算法(PDFP~2O)、凸集上的基于邻近算子的原始对偶不动点算法(PDFP~2O_C)、基于邻近算子和预处理算子的原始对偶不动点算法(PDFP~3O).在基于邻近算子的前向后向算子分裂算法(PFBS)和基于邻近算子的不动点算法(FP~2O)的基础上,首先从直观上得到PDFP~2O.然后利用一阶优化条件,通过引入对偶变量,利用邻近算子与次梯度的等价关系,通过两步额外的迭代,可以将提出的算法表示成算子的不动点迭代形式,并因此得到PDFP~2O的拓展版本PDFP~2Oκ.利用邻近算子的强非扩张性,在特殊构造的范数的帮助下,证明了PDFP~2Oκ的收敛性.在稍强的条件下,进一步给出了算法PDFP~2Oκ的收敛速度.接下来,通过等价变形,进一步解释了算法PDFP~2O,并给出了与其他已有算法的联系和区别.最后通过关于图像放大、CT重构、并行核磁共振成像的数值实验说明了算法的有效性.总体来说,PDFP~2O的性能和当前顶尖的算法的性能是可比较的,而PDFP~2O的参数的选择相对容易,这在求解具体的实际问题中是很有意义的.对于很多实际问题,根据不同的物理背景,解的取值都有一定的限制.所以,进一步考虑求解带凸集约束的可分离凸优化问题.通过将凸集的约束表示成示性函数而加入目标函数中的技巧,适当重新组合,可直接利用PDFP~2O求解,利用函数的可分离性,得到PDFP~2O_C.因为PDFP~2O_C本质上就是利用PDFP~2O求解与原问题等价的无约束优化问题,根据PDFP~2O的证明结果,可以方便的得到PDFP~2O_C的收敛性以及收敛速度.在解位于凸集内部的假设条件下,利用示性函数的邻近算子为投影算子,类似于PDFP~2O的推导,通过算子的不动点迭代得到求解解位于凸集内部的可分离凸优化问题的基于邻近算子的原始对偶不动点算法(PDFP~2O_C0).利用投影算子也是强非扩张算子的性质,并利用PDFP~2O的证明结果,得到PDFP~2O_C0的收敛性以及收敛速度.一般来说,算法PDFP~2O_C具有很好的通用性,算法PDFP~2O_C0只适用于解位于凸集内部的情形,但其迭代形式更简单、直观.最后通过CT重构和并行核磁共振成像说明了算法PDFP~2O_C和PDFP~2O_C0的有效性.从收敛速度的估计中,以及CT重构的数值实验结果中,可以看出PDFP~2O的收敛速度和相应矩阵的条件数有关,当其中一个矩阵的条件数变差时,PDFP~2O的收敛速度会变慢.所以,进一步考虑利用预处理算子来加速,提出PDFP~3O.类似于PDFP~2O的推导,通过额外引入两个预处理算子可以得到PDFP~3O.通过引入另一个特殊构造的范数,类似于PDFP~2O的证明,可以证明PDFP~3O的收敛性与收敛速度.并进一步将PDFP~3O与精确Uzawa、不精确Uzawa算法和非线性不精确Uzawa算法比较,并利用不动点算法框架导出这些算法.最后,通过第二类椭圆变分不等式中的两个实例,说明当问题条件数较差时,PDFP~3O的确优于PDFP~2O.在简化的摩擦问题中,根据一阶优化条件,将退化的问题转化为非退化的问题;根据新问题中的迭代矩阵的内蕴性质,给出了选择预处理矩阵的方法.在管中的粘塑性流体问题中,尝试采用共轭梯度法获得预处理矩阵的效果.