论文部分内容阅读
如何通过合理方案设计实现短壁回采过程中留设的支巷间煤柱实现自身的稳定屈服,从而缓解或消除浅埋煤层坚硬顶板破断大面积来压所产生的动力灾害问题,同时最大程度提高煤炭回收率,对神东地区短壁回采工艺的应用以及实现边角煤的最大程度回收尤为重要。本文从决定浅埋煤层顶板稳定的关键层着手,综合利用理论分析、物理模拟和数值模拟等研究方法,分析关键层开裂前的变形和能量分布以及开裂后形成砌体梁结构的稳定机理;系统分析相邻区段开采过程中关键层及其上覆岩层的变形和破断规律;结合局部刚度理论和屈服煤柱理论对“关键层-屈服煤柱”系统安全破坏进行了工程方案设计和优化。取得以下创新性成果:(1)建立了包含煤壁屈服区在内的复合地基梁力学模型,研究了煤壁屈服区宽度与超前支承压力分布、关键层的初次开裂和周期开裂之间的关系,系统分析关键层的开裂位置、能量分布和变形等情况;建立了包含原岩水平应力作用的砌体梁稳定计算方法和判据;结合神东浅埋煤层覆岩特点分析了关键层及其上覆岩层的开裂过程、变形、应力分布和整体垮落机理。(2)根据短壁连采工作面布置特点和尺寸,利用物理相似模拟和数值模拟,研究了相邻区段开采对上覆关键层稳定的影响。结果表明,本区段支巷回收过程加剧了相邻已采区段关键层的变形,影响程度随已采区段关键层跨度增加而越加明显;而已采区段关键层是否稳定直接决定了相邻在采区段关键层的变形、极限跨距和垮落模式;通过位于相邻两侧区段上方所形成的双压力拱结构相互作用机理分析了产生上述影响的原因。(3)在进一步完善围岩局部刚度计算方法的基础上,并结合屈服煤柱理论提出了“关键层-屈服煤柱”系统安全破坏理论,在系统分析区段支巷宽度、支巷回收顺序、末采支巷(区段内最后回收的支巷)位置、屈服煤柱(支巷间煤柱)位置和数量等参数对围岩局部刚度影响的基础上,将屈服煤柱设计方案简化为6个最基本的刚度单元,通过数值模拟和理论计算确定了适合每个局部刚度单元的合理屈服煤柱宽度;在综合考虑区段内支巷安全回收和关键层安全破坏以及增加区段可采面积和区段煤炭回收率的基础上对屈服煤柱设计方案进行了筛选和优化,并进一步给出了“关键层-屈服煤柱”系统安全破坏工程方案优化设计流程。