基于POI数据的共享汽车出行影响因素分析与需求预测

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:edward109
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在当前共享经济的时代下,共享汽车正作为一种绿色、经济、便捷的出行方式融入人们的生活。为了深入了解共享汽车整体运营特征,本文在现有研究基础上,选取共享汽车订单数据、兴趣点(POI)数据、天气数据作为研究数据基础,刻画共享汽车出行时空分布特征;通过构建POI密度指标负二项回归模型,着重分析兴趣点因素对共享汽车出行需求的影响关系,为运营商进行新站点的选取提供科学支撑;运用深度学习网络模型实现站点每日借还车量的预测,为运营商深入了解共享汽车用户的使用规律,合理安排车辆调度等提供科学依据。论文主要内容如下:(1)共享汽车出行需求时空特征刻画。通过Python编程技术爬取高德地图POI数据并在rp5.ru网站获取天气数据,对原始数据进行数据清洗、缺失值补充、整合重分类等处理。基于站点借还车数据,对共享汽车的出行时空特征进行分析研究,结果表明站点每日借还需求以周为单位,呈周期性变化,周一至周四需求波动不大,周五至周日需求增多且借车量周六最多,还车量周日最多;用车时段上用户更倾向于在工作日晚间及双休日白天使用共享汽车。共享汽车出行空间需求分布方面,工作日的热点区域主要集中于办公区与居住区,双休日的热点区域分布更广,还会出现在餐饮购物、休闲娱乐聚集的区域。(2)构建POI密度指标深入揭示POI兴趣点对订单量的影响。基于共享汽车订单数据与POI数据,结合半正矢公式与余弦函数建立综合考虑兴趣点个数、建筑面积、与站点距离等因素的POI密度指标作为模型的自变量,构建共享汽车出行需求的负二项回归模型,结果表明住宅区、公交车站区域附近的站点需求显著减少;商业服务类(餐饮购物设施、宾馆酒店)、企事业单位(公司、学校)、休闲娱乐类(娱乐场所、度假疗养场所、风景名胜)、交通设施类(火车站、地铁站、机场、停车场)分布较多的区域,共享汽车站点需求显著增大。据此,基于本文构建的POI密度指标及其与订单量的关系模型可为运营商新站点的选取提供理论支撑。(3)运用深度学习模型预估站点需求。将兴趣点变量、天气变量、日期变量作为输入序列,以站点每日借还量为输出序列搭建长短期记忆网络LSTM模型,通过与其他三类模型(多元线性回归模型、BP神经网络模型和灰色预测模型)进行对比发现,LSTM模型拟合效果最好,R2值约80%。这一预测结果与现有最新文献对比,本文构建的模型包含的POI自变量更少,模型拟合效果更好。因此基于本文的模型对订单量的需求预测可为各站点共享汽车的日常调度提供科学依据。
其他文献
随着深度学习技术的发展,目标检测技术的检测精度和速度不断被刷新。目前目标检测技术已被应用于生活的各个场景中,如:智能监控、智慧交通和无人驾驶等。然而目标的时空尺度变化仍然是检测中的难点,因此本文从多尺度特征的角度对这些问题展开了研究,利用空间多尺度特征研究了小目标难以检测的问题,在此基础上又研究了检测算法轻量化的问题,最后利用时间多尺度特征对视频目标检测中帧间信息的有效利用进行了研究。本文的具体研
疲劳识别技术可应用于疲劳驾驶预警、空中交通管制员疲劳监测、重型器械操作员疲劳提醒等领域,以规避疲劳作业潜在的巨大安全隐患。针对现有疲劳识别方法欠缺考虑疲劳个体差异性及依赖于实验室数据的不足,本文研究了真实场景下基于自适应阈值眨眼检测及Xgboost的疲劳状态识别问题。有效的特征提取技术是实现可靠、有效的疲劳状态识别的前提。作为提取眼部疲劳特征的关键技术,现有眨眼检测方法存在较少考虑眨眼个体差异性导
车辆重识别技术也被称为车辆跨镜头追踪技术,其主要目的是从不同摄像头拍摄到的大量道路监控视频中检索属于特定车辆的全部图像。该技术需直接从车辆的视觉外观中提取到有判别性的特征,但是跨摄像头进行图像匹配时车辆图像往往来自于不同的视角,而在不同的视角下车辆的外观变化很大,因此跨视角匹配已经成为车辆重识别任务中一个重要的挑战:一方面,多个不同视角下同一车辆外观差异性大,导致车辆有着显著的类内差异;另一方面,
智能制造在信息系统的性能需求和功能需求方面对目前的制造业提出了崭新的或者更高级别的要求,通过对影响信息系统重要性能—鲁棒性的因素进行分析,根据智能制造信息系统的信息层和物理层之间的深度协作建立智能制造信息系统网络模型,描述智能制造信息系统级联失效过程,从网络可用性角度基于蚁群算法进行仿真实验,提高系统未发生故障的点在级联失效情况下寻找最短路径的能力,从而改善系统鲁棒性。本文主要从以下三方面进行创新
付费会员的经济模式近年在国内各个利于飞速发展,通过付费成为会员可以享受更优惠的价格和更高平直的服务,付费会员的经济模式正成为消费的新常态。付费会员的经济模式通过个人和企业奖励一种正式的、可持续的关系,企业为会员推出了更加优质的服务,会员增加该企业的消费总额和频率。互联网领域会员经济随着生态的竞争而迎来了爆发增长。一方面,全球互联网会员已形成规模,亚马逊的会员用户数在2018年超过1亿。另一方面,随
随着工业4.0概念的兴起,工业领域也正发生着智能化转型的热潮。在实际的工业场景中,借助于云计算和边缘计算技术可以提升工业物联网中生成数据的处理效率,但数据泄露造成的隐私问题也正在损害着人们的利益。针对该问题,众多学者利用基于密码学理论的数学加密方法进行了较多研究并取得了一定的研究成果。但本文方案不同于调研的数学加密等方法,而是从新的角度考虑该问题,利用区块链去中心化、防篡改以及可追溯的技术特性,通
为了增加机器人的适应场景和应用范围,轮腿式机器人应运而生,其中轮腿共同驱动式机器人控制简单,可靠性和地形适应能力一般,轮腿独立驱动式机器人可靠性和地形适应能力强,控制复杂。本文利用单环闭链机构可靠性强,控制方便的特点,将两种单环闭链机构相结合,提出具有两种运动形式的单环闭链变胞机构,根据闭链腿式机器人的布置原则构建可变形轮腿共同驱动式机器人,进行了理论分析、仿真和样机试验研究。首先,将Chebys
基于静息态功能磁共振成像(Resting-state functional Magnetic Imaging,rs-f MRI)的脑指纹是指rs-f MRI信号中存在着独一无二的特征,可以用来表明个体的独特性,然而与脑指纹识别最相关的特征至今仍没有统一的定义标准。人类连接组项目的发布以及机器学习、深度学习的发展,为脑指纹的探索奠定了技术基础。基于rs-fMRI的脑指纹识别,大多采用全部的静态功能连
在OA系统运维过程中,某公司信息部门经常接到用户各式各样的需求。所有用户都想快速、完全实现自己的需求。由于时间、资金、人员数量等资源有限,考虑到诸多方面的要求,如何正确处理交付需求的先后顺序,就显得极为重要,这就是需求优先级。但是信息部门常常凭直观经验来判断需求优先级,有时会造成资源分配不合理、需求安排不科学,进而受到用户投诉,对年底的部门评比结果造成一定影响。为改善这种状况,就需要搭建一套判定需
目前,城市交通路口摄像头产生的海量交通数据可以应用于交通管理、智能安防等领域。因此,对特定车辆进行检索,即车辆重识别(Vehicle Re-ID)就变得十分重要。车辆重识别任务是指:在给定一张测试图像的前提下,找出跨摄像头拍摄的同一辆车的图像。2012年后,随着算力的大幅提升和海量数据的产出,深度学习方法在各个领域不断刷新着最佳性能的纪录,包括车辆重识别任务。尽管近年来车辆重识别的方法多样,但是少