高质量远聚焦超声成像算法及图像质量评估软件系统

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:yellue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超声成像设备是现代医疗影像学检查设备中最常见的设备之一,因其具有操作简单、实时成像等特点,超声成像检查被广泛的应用到疾病的检查与诊断中。随着现代医学的应用和发展,不同的临床领域对超声成像设备的数量需求与性能要求都有着很大程度的提升。因此,国内外越来越多的科研人员在不断地探索超声成像技术,改善超声成像质量,进而提高超声成像设备的整体性能。同时,随着超声成像设备投入临床使用后,对设备定期做质量控制与评价,保障超声成像质量尤为重要。故本文主要从提高超声成像设备的成像质量和对超声成像设备做质量控制与评价两个方面进行研究。首先本文提出了一种基于自适应调节过零点系数的远聚焦超声成像算法,用于改善超声成像质量。该算法在原有过零点系数(Zeros-cross Factor,ZF)的基础上,先将相干系数(Coherence Factor,CF)作为调节系数对ZF进行调节,形成新的CFa ZF自适应加权系数,然后再将广义相干系数(Generalized Coherence Factor,GCF)作为调节系数对ZF进行调节,形成新的GCFa ZF自适应加权系数。根据仿真与实验结果表明,新的CFa ZF和GCFa ZF加权算法相对于CF加权算法、GCF加权算法及ZF(δ=0.6)、ZF(δ=0.8)、ZF(δ=1.0)加权算法,能够有效地提高背景组织图像的对比度,进一步改善超声成像质量。另外,本文设计开发了一款超声成像设备质量控制与评价软件系统,该系统能够检测超声图像的横向分辨力、纵向分辨力、盲区及探测深度等性能指标,并能够根据超声成像设备的探头类型和发射频率来评价超声图像是否满足对应指标的国家标准,从而确保超声成像质量。
其他文献
火灾是严重威胁公共安全和经济社会发展的主要灾害之一,为了有效预防和减少火灾事件所造成的损失,火灾探测技术应运而生。点型感烟火灾探测器是目前广泛应用的一种火灾探测器,其性能直接地影响到火灾预警的实时性和可靠程度,所以对点型感烟探测器的性能评估尤其重要。国家标准GB4715-2005规范了点型感烟火灾探测器的标定环境的要求,为进行同类火灾探测器的性能检定提供了依据。本文研究了点型感烟火灾探测器标定实验
目前,工业生产的需求日益增加,大量含镉废弃物以烟、渣和废水的形式向环境中排放,使其逐渐变成了影响人类健康的“公害”之一。镉是一种剧毒重金属污染物,其生物蓄积性强、半衰期长,过量镉接触会对人类的肾脏、心血管、肺、免疫系统等造成不可逆转的危害。因此,超痕量镉离子的灵敏且特异检测在食品安全和环境监测中均具有重要意义。为了解决现有重金属镉离子(Cd2+)检测技术存在的检测精度低、选择性差以及无法满足快速实
对于目前高温下的视觉测量,如何降低高温部件本身发出的辐射光以及高温气流扰动对图像质量的影响仍然是一个挑战,这在航空航天或汽车制造等领域具有重大影响。单像素成像(Single-Pixel Imaging,SPI)作为一种新的成像方法,近年来得到了较好的发展。SPI具有成本低、信噪比高、成像谱宽等优点,特别是在弱光及非可见光条件下,它具有显著的优势。本文针对高温下复杂的光学成像环境,提出了一种结合单像
近年来,卷积神经网络(Convolutional Neural Networks,CNNs)在生活中的应用变得越来越广泛。CNN模型中庞大的数据量以及计算量,也逐渐成了掣肘神经网络发展的主要因素。二值化神经网络(Binary Neural Networks,BNN)作为一种轻量型的神经网络,相比于CNN可以极大减少数据量以及计算量。基于BNN的优点,专用BNN硬件加速器的设计成为一个新的热门研究方
目前,在光学非接触测量领域,叠焦测量仍然是最具发展潜力的课题。利用运动机构实现光学系统的焦深扩展,在距离被测物体不同高度的位置采集图像序列,通过算法处理获取每一个点的最佳聚焦位置。在这个过程中,聚焦评价算法起到了重要的作用。各种聚焦评价算法在不同的使用场景下性能表现存在差异,对聚焦评价算法性能的研究有利于更好地开展测量工作。本文系统地介绍了基于焦深扩展显微成像技术的测量方法,根据叠焦原理,搭建了叠
随着硬件和软件的蓬勃发展,视频图像这种更直观的信息,已成为传递信息的重要媒介,如何从海量的视频图像信息中找到人类所感兴趣的信息显得愈发重要。背景减除任务是计算机视觉领域重要研究课题之一,能够只保留运动的前景目标,而过滤掉信息量更大但不感兴趣的部分,即背景区域部分。近三十年来,国内外研究者基于背景建模理论等传统算法对背景减除任务做了深入研究。然而,实际应用中视频场景十分复杂,传统的背景减除算法难以保
近年来,随着人们公共安防意识的提高,智能监控系统在安防领域中发挥着越来越重要的作用,系统中关键的行人再识别技术也备受关注。该技术的核心思想是对出现在跨摄像头中特定的行人进行身份匹配。将该技术应用在实际场景下面临着一些挑战,一方面由于光照条件的影响,跨模态行人再识别利用近红外摄像机拍摄出不同模态下的行人图片,另一方面由于在实际场景下摄像头会拍摄出大量没有标签的行人图片。基于这两个实际场景,如何提取不
网络技术的快速发展为当代社会的人们提供了更加便捷和优质的生活。然而,随着网络规模的日益增大,网络的管理和维护任务也变得日趋复杂。传统网络架构在当前的网络发展形势下正面临着前所未有的挑战,如相对封闭、管理不灵活和过于复杂等。作为一种新型网络架构,软件定义网络(Software Defined Networks,SDN)则顺应了网络发展的需求,专注于解决传统网络架构的痛点。SDN将控制面与数据面分离,
屏蔽泵因其无泄漏、噪声低的显著优势,被广泛应用于化工、军工、航天等领域。为更好地满足屏蔽泵的智能化发展,本课题围绕实际需求,设计了基于屏蔽泵的多传感器融合物联网远程在线监测平台,主要功能涵盖屏蔽泵状态的远程在线监测、报警和控制,实现多参量、全过程的实时信息采集,引入多传感器信息融合技术,全面监控屏蔽泵的运行状态。主要研究内容如下:(1)从屏蔽泵常见故障出发,分析平台功能性和非功能性需求,探讨平台架
医学超声成像由于其无痛苦、无创伤和无辐射等特点,被广泛应用于人体组织检查。在医学超声成像方式中,传统聚焦成像由于只采用了发射定点聚焦,使获得的图像只在焦点附近处有较好的分辨率。合成孔径成像能实现统一较好的分辨率,但由于发射功率低,对于高衰减高噪声的成像区域,成像结果有着很低的信噪比。平面波成像采用所有阵元并行发射的方式提高了发射功率,且实现了极高的成像帧率,但平面波成像没有采用发射聚焦,因此图像的