论文部分内容阅读
当前,显示技术迅猛发展,大尺寸、柔性化以及透明化显示器已成为重要的研究热点。传统的非晶硅材料迁移率低、透光性差,无法满足显示需求。氧化铟镓锌(IGZO)薄膜由于具备迁移率高、均匀性好、在可见光范围内透光率高等优点而受到广泛的关注。本论文采用IGZO薄膜作为有源层材料分别在Si基衬底与高透光率的石英玻璃衬底上制备了非晶氧化铟镓锌薄膜晶体管(a-IGZO TFT),研究了薄膜制备工艺对a-IGZO TFT性能的影响。主要工作内容包含以下几个方面:采用射频磁控溅射法制备了IGZO薄膜,并通过X射线衍射(XRD)和能量色散谱仪(EDS)对薄膜的晶相结构与具体成分进行分析。实验发现退火温度达到500℃时,室温下沉积的IGZO薄膜仍为非晶态。本文在Si基衬底上制备了a-IGZO TFT器件,研究了氧氩比、有源层厚度及溅射功率对TFT性能的影响。结果表明,当O2:Ar为10:90,有源层厚度为161 nm,溅射功率为100 W时,TFT的电学性能最佳,开关比为4.9×105,饱和迁移率为8.19cm2/Vs,阈值电压为3.0 V,亚阈值摆幅为1.84 V/dec。当O2:Ar低于或高于10:90时,器件的迁移率会降低,阈值电压增大;当有源层厚度小于161 nm时,由于有源层较薄,输运到沟道中的载流子数量较少,因此迁移率会降低。当有源层厚度大于161 nm时,载流子的传输会受到薄膜中的大量电荷和带电离子的散射作用而降低其迁移率;在100 W以内,随着溅射功率的增加,器件的开关比、迁移率得到提高,阈值电压与亚阈值摆幅降低。以石英玻璃为衬底,采用PECVD生长绝缘层Si3N4薄膜成功制备了透明a-IGZO TFT器件,并对Si3N4薄膜沉积以及器件退火工艺进行了优化。结果表明,当Si3N4沉积温度为350℃、器件退火温度为400℃时,TFT的电学性能最优,开关比为6.5×104,饱和迁移率为7.46 cm2/Vs,阈值电压为4.1 V,亚阈值摆幅为1.98V/dec。在350℃以内,随着沉积温度的提高,Si3N4薄膜绝缘性更加良好。在500℃以内,IGZO薄膜在可见光范围内透光率随着退火温度增加而增加。制备了双有源层结构的a-IGZO TFT,双有源层由含氧量不同的两层IGZO薄膜构成。实验发现,此种结构可以明显降低TFT的关态电流,提高其开关比与饱和迁移率。当O2:Ar为7:93/35:65时,TFT的性能最优,开关比达到2.6×107,饱和迁移率为18.39 cm2/Vs,阈值电压为1.6 V,亚阈值摆幅为0.97 V/dec。本文还研究了不同退火气氛(N2、Air、O2)对透明双有源层TFT电学性能的影响,实验发现在N2中退火的TFT性能最佳,饱和迁移率高达22.73 cm2/Vs。XPS能谱分析表明,N2中退火后的IGZO薄膜中具有最优的氧空位浓度与最大的In浓度,In离子能引入大量的电子,增加载流子浓度,因而器件的迁移率得到提高。最后,本文测试了在N2中退火后的TFT的稳定性,结果表明随着在空气中放置时间的延长,TFT的阈值电压会增大,迁移率会减小。