耐盐异养硝化—好氧反硝化菌N07的脱氮特性及应用研究

来源 :北京农学院 | 被引量 : 0次 | 上传用户:juzhaoyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前我国城市化、工农业发展中过量排放的废水造成的氮素污染,严重破环生态系统并威胁人类健康。对于含盐量较高的特种污水处理,脱氮处理更加困难。因此,筛选和研究耐高盐的高效脱氮微生物是高盐废水处理的关键措施。异养硝化-好氧反硝化(HN-AD)细菌以其简单的氮代谢路径和较强的抗逆性而备受关注,但目前对于耐盐HN-AD菌研究较少。筛选出耐盐性强的HN-AD菌,探讨其脱氮特性及在实际废水中的应用效果具有重要意义。本研究主要研究内容及结果如下:(1)从高盐化工废水中筛选到一株耐盐且高效脱氮的菌株,形态学观察为革兰氏阳性菌、直杆状,分子鉴定为巨大芽孢杆菌,命名为N07。(2)菌株N07能在8%的高盐环境正常生长和脱氮,对于总氮、硝态氮、氨氮和亚硝态氮的最高去除率分别为85.95%、70.62%、44.55%和85.56%。(3)在碳源为蔗糖、C:N为20:1、p H为8、转速160 rpm、温度为28℃时菌株表现最佳脱氮性能;响应面实验结果表明,在初始氨氮浓度为150 mg/L时,菌株N07的总氮的去除率可达72.56%。(4)高浓度钙离子(≥5 mg/L)对该菌脱氮能力起到抑制作用;镁离子是脱氮过程中必须的元素;铜离子的存在超过0.5 mg/L、镉离子的存在超过2.5 mg/L时对菌株具有毒害作用。(5)菌株N07能够同步去除氨态氮、硝态氮和亚硝态氮,混合氮源存在时优先利用铵态氮,对不同氮素降解速率由大到小排序为:NH4+>NO2->NO3-。(6)从菌株N07基因组中克隆到硝酸还原酶基因Nas、亚硝酸盐还原酶大亚基基因Nir B、一氧化氮还原酶基因Nor B和一氧化二氮还原酶基因Nos Z,进一步验证了N07的好氧反硝化能力。(7)用N07菌株处理核酸生产废水,可以100%去除污水中的氮素;6 h内能将初始总氮浓度为74.24 mg/L的生活污水与总氮浓度为498.53 mg/L的核酸生产废水中的氮素全部去除,该菌株对于实际污水中的氮素去除具有较好的应用潜力。
其他文献
光敏抗菌材料作为先进的绿色材料,依靠光敏剂(PSs)在光照下产生活性氧(ROS),以杀死细菌。具有杀灭效率高、广谱、长期稳定、高耐久性、低毒性、环境污染小等特点,可有效应用于食品活性包装,保护食品免受微生物污染。黄连素(BBR)是一种来源于黄柏和黄连等草本植物中的天然光敏剂。然而,由于不是药食同源,高水溶性阻碍了其作为光敏抑菌剂添加到食品包装薄膜中的应用。本文为解决上述问题,通过黄连素与阴离子表面
学位
水作为地球上重要的自然资源,是人类生存与发展不可或缺的物质基础。然而人口增长和工业生产造成的地下水污染使得淡水资源短缺问题成为人类面临的最紧迫的威胁之一。在海水淡化技术日益发展的今天,通过处理海水来获取清洁水的方式正逐渐成为人们的共识。海水淡化技术主要包括蒸馏法、离子交换法、光热蒸发法、渗析法和反渗透法等。其中,光热蒸发法因结合了地球上最丰富的太阳能和水这两种资源而被认为是最具吸引力的海水淡化技术
学位
花楸树(Sorbus pohuashanensis(Hance)Hedl.),又名百花花楸,是一种集叶、花、果为一体的乡土景观树种,具有极高的园林及生态价值,分布于西北、华北以及东北的广大地区,生于海拔800-2200米坡地或山谷林中。由于发掘力度不够,花楸属种间以及花楸树种群间的进化关系未曾揭示,花楸树引种到低海拔地区叶片出现“日灼”的原因尚未解析。本研究基于全基因组测序技术组装了染色体水平的花
学位
豆乳是以大豆为原料,经过浸泡、研磨、过滤及煮浆等工艺加工而成的产品,营养价值高,广受消费者欢迎。其中,热处理是豆乳生产过程中的必要环节,其目的是杀菌、钝化胰蛋白酶抑制剂、提高蛋白质变性程度增加消化率等。为提高豆乳的风味和增强豆乳稳定性,除常压煮浆外,热烫和微压煮浆技术近年来逐渐应用于豆乳加工。研究表明不同的热处理方式导致豆乳蛋白质结构和聚集状态不同,但其与消化性之间的关系目前尚不清楚。因此,本研究
学位
高硅铝合金具有比刚度大、线膨胀系数小、导热率高等优异性能,是一类极具应用前景的光学遥感器光机结构材料。为了有效降低经光机结构材料表面反射的杂光对遥感器成像质量的影响,克服等离子体所致的充放电效应,在高硅铝合金表面制备防静电消杂光涂层尤为重要。本论文采用化学刻蚀与微弧氧化相结合的工艺在Al-70Si合金、Al-50Si合金、Al-27Si合金表面制备消杂光涂层;在此基础上,利用磁控溅射技术在消杂光涂
学位
废弃PET(全称聚对苯二甲酸乙二醇酯)造成了严重的环境污染和资源浪费问题,将PET全回收利用可以解决这一迫切问题,而PET全回收利用的主要难题是寻找合适的PET降解方法。环氧树脂作为生产生活中最常用的热固性树脂之一,其韧性差、脆性大等问题逐渐限制了环氧树脂的应用。因此,PET胺解制备增韧环氧树脂固化剂是解决PET全回收利用难及环氧树脂韧性差问题的优选方案之一,也对环境保护、资源回收具有重要意义。针
学位
LaBr3:Ce闪烁晶体具有光产额高,能量分辨率好,抗辐照性能强等诸多优点,近年来在诸多探测领域受到广泛关注。高纯溴化镧多晶材料作为LaBr3:Ce单晶生长的原料,其纯度质量是直接影响LaBr3:Ce单晶质量及闪烁性能的重要因素。但是,溴化镧多晶材料具有易吸潮、高温易水解等缺点,导致溴化镧多晶材料常含有大量的LaOBr杂质,使得LaBr3:Ce闪烁晶体存在性能差和易开裂等诸多问题,严重影响了LaB
学位
锂离子电池(LIBs)作为社会进步的能源,已经得到广泛应用。但LIBs在寿命和成本等方面仍存在问题,与LIBs相比,钠离子电池(SIBs)因其资源广泛和低成本等优势而备受关注。SIBs负极材料的发展仍然面临着许多严重的问题,开发先进的SIBs负极材料迫在眉睫。近年来,MOFs衍生的过渡金属硫属化物(硫化物、硒化物)材料已成功应用于LIBs负极材料。然而,当用作SIBs负极材料时,该材料仍存在体积膨
学位
高校体育教学改革是高等教育体系建设的组成部分,也是推动高等教育高质量发展的重要力量。立足体育教学“育体”本质,切实发挥以体育人的价值功效,为党和国家培养人才,是我国高校体育教学改革的价值意蕴。享受体育乐趣、塑造健康体魄、培育健全人格、锤炼意志品质是我国高校体育教学改革的目标导向。高校体育教学要加强顶层设计,补齐资源短板,增强师资水平,优化教师考核制度,丰富课程内容,变革教学方式,完善多元评价,进而
期刊
隔膜是锂离子电池的重要组成部分,其性能直接影响电池的使用性能及安全性。商业化的聚烯烃微孔膜存在电解液浸润性差、耐穿刺强度低等问题,传统的改性方法(涂覆改性)将不可避免的增加隔膜厚度及克重,无法满足高能量密度锂离子电池的需求,因此在不增加隔膜厚度的情况下提高隔膜的电解液浸润性及耐穿刺强度成为研究的热点,也是本课题的研究目的。本文以超高分子量聚乙烯(UHMWPE)为基体材料,以乙烯-醋酸乙烯酯共聚物(
学位