论文部分内容阅读
如何利用采集到的混合有噪声干扰的EEG/MEG(electroencephalography/magnetoencephalography)数据对极其微弱的脑电源信号进行可靠的探测、增强和定位是脑电信号检测中至关重要的问题。独立分量分析(Independent Component Analysis,ICA)是对EEG/MEG数据进行降噪和干扰消除的一种有效方法,在描绘人类认知和感觉运动功能的神经系统的处理过程中显现出了很好的发展前景。 首先,本文介绍了独立分量分析的基本原理和信号盲分离算法的基本理论,高阶累积量、信息论等统计信号处理方法,以及经典盲分离算法的原理和算法性能评价准则。 本文以信息论为基础,结合牛顿迭代的快速算法和扩展ICA的思想,针对线性瞬时混合模型,改进并实现了混合有脉冲噪声的脑电信号盲分离快速算法。该算法采用特征值分解的方法对采集信号进行白化处理,选择互信息量最小化判据:以输出信号之间的互信息作为目标函数,根据牛顿迭代法推导出了算法表达式;算法中使用t分布密度模型作为超高斯信号的概率估计,与具有次高斯特性的密度模型相结合,使得算法满足超高斯、次高斯混合信号的分离,同时能有效抑制脉冲噪声。分析了算法的稳定性,通过仿真验证了无高斯噪声下算法的有效性和低信噪比情况下算法的稳健性;针对不同源信号混合,验证了算法进行分离的适应性。 数字信号处理器(digital signal processor,DSP)具有可编程性和强大的处理能力,为盲分离算法从实验室走向实际医学仪器应用提供了硬件平台。由于DSP硬件位数的限制,使盲分离算法的计算过程中出现截尾误差,所以本文使用Matlab仿真了硬件进行核函数的数值近似计算,并分析了截尾误差对算法的影响。仿真实验结果表明,在采用数值近似计算和有限位截尾的情况下,分离算法依然有效。本文确定了应用DSP实现算法时数据位数大小,并使用TMS320C54XC语言编写了脑电信号盲分离算法的DSP程序,为算法的硬件实现奠定了基础。