论文部分内容阅读
芽孢是食品工业中的主要微生物污染源之一。近年来采用超声波与热联合的方式失活芽孢成为研究的热点,但目前多数研究主要集中在声热结合方式对芽孢失活效果的影响上,缺乏关于声热联合失活芽孢机制全面系统的研究,从而限制了该联合技术在食品加工中的应用。鉴于此,本论文以Bacillus subtilis芽孢为研究对象,主要围绕超声波联合热(Thermosonication,TS)对芽孢的失活动力学展开,借助细胞微观结构分析、流式细胞仪结合PI/SYTO染料及蛋白质组学等手段,从细胞水平明确TS处理后芽孢形态结构及生物学特性的改变;从分子水平挖掘TS作用于芽孢的靶点蛋白,探讨芽孢生物功能变化与蛋白差异表达之间的关系,进而阐释TS失活芽孢的机制。主要研究内容和结果如下:(1)TS对B.subtilis芽孢的作用效果及其失活动力学模型建立研究了不同超声波功率密度(6.7、13.3及20.0 W/m L)和温度(60、70及80℃)条件下TS处理对芽孢的作用效果及失活动力学,分析了温度、空化效应、芽孢自身结构以及聚集行为对芽孢失活的影响。结果表明,温度对TS失活芽孢起主要的作用,当温度为60℃和70℃时,TS失活芽孢效果微弱,其最大失活量仅达0.61 log;当温度为80℃时,TS失活芽孢的数量显著提高(P<0.05),最高达2.23 log。超声波和热单独作用于芽孢产生的最大失活量均小于1 log,且失活量之和远低于TS作用于芽孢产生的失活量,说明超声波和热在失活芽孢过程中存在协同效应。通过TS处理过程中过氧化氢产生量测定发现,温度为80℃时过氧化氢产生量低于其在温度为60℃和70℃时的产生量,同时0.1 m M过氧化氢与80℃结合产生的芽孢失活量显著低于TS产生的芽孢失活量(P<0.01),表明声热之间的协同效应主要由机械效应与热协同产生,声化学效应贡献效力较小。不同温度下芽孢失活动力学曲线不同,温度为60℃和70℃时,曲线呈现延滞趋势;温度为80℃时,各超声波功率密度之间的芽孢失活动力学曲线均为两段式,分为快速杀菌期和延滞期,且能较好地用Log-logistic模型进行拟合。通过对TS处理过程中芽孢粒径测定发现,60℃和70℃下的芽孢产生聚集保护现象,从而增加自身对TS的抗性;80℃下的芽孢并未产生聚集保护,但芽孢衣和α/β型SASPs在芽孢的TS抗性中发挥重要作用。(2)TS失活芽孢的形态学机制采用电镜观察和表面特性分析手段,比较分析了TS处理(6.7 W/m L,80℃)对芽孢形态学结构、表面特性、抗逆性和密度等方面的影响。结果发现,TS处理后的芽孢形态结构发生了变化,其中芽孢衣、皮质层、内膜及核内物质均遭到了不同程度的破坏。芽孢外层结构的破坏会导致其表面性质发生改变,如疏水性、黏附力、Zeta电位绝对值等降低。TS处理后的芽孢在后续85℃和90℃下的失活量明显高于未处理组芽孢在后续热处理中的失活量,表明TS处理后芽孢的热抗性下降。同时在后续热处理中TS处理组芽孢的吡啶-2,6-二羧酸(Pyridine-2,6-dicarboxylic acid,DPA)释放量明显高于未处理组芽孢的释放量,说明芽孢内膜在TS处理过程中受损,从而加速后续热处理过程中DPA的释放,造成芽孢热抗性降低。另外,流式细胞术结合PI/SYTO16双染结果发现TS处理后部分芽孢内膜和皮质层的完整性受到破坏,且芽孢失活过程中涉及一个中间状态的细胞群,处于该状态的细胞内膜和皮质层部分受损。TS组芽孢悬浮液在海碘醇密度梯度分离液中形成三个芽孢分离层,对各个分离层中芽孢的活性和DPA含量分析可知,下分离层芽孢虽失活却仍保留DPA,表明内膜的崩溃发生在芽孢失活之后。上述结果表明TS不是通过内膜破裂杀死芽孢的,而是通过破坏芽孢结构或核内关键蛋白杀死芽孢的。(3)TS对芽孢的多分子靶点效应考察了TS作用后芽孢在萌发和出芽生长阶段的生长特性,分析了萌发阶段关键酶和受体蛋白的损伤对芽孢失活的影响,同时探究了出芽生长阶段DNA损伤和ATP合成等情况。TS处理组芽孢经密度梯度分离后,对下密度分离层中芽孢的萌发能力测定可知,TS处理后失活且保留DPA的芽孢在L-丙氨酸中仍具有萌发能力,但其萌发能力低于未处理组芽孢,表明萌发相关蛋白受损。对受体依赖型的萌发能力测定发现,TS处理后的芽孢在L-valine诱导下的萌发能力高于在AGFK诱导下的萌发能力,说明萌发受体蛋白Ger A的受损程度低于萌发受体蛋白Ger B或Ger K。同时对非受体依赖型的萌发能力测定可知,TS处理后的芽孢萌发速率与未处理组芽孢相似,表明DPA释放通道蛋白Spo VA在TS处理过程中未被破坏。利用Ca-DPA孵育和溶菌酶恢复性培养基对TS处理后的芽孢进行人工恢复培养,结果发现培养后的TS处理组芽孢数目未显著增加(P<0.05),表明TS处理不是通过萌发受体蛋白和皮质层水解酶的损伤杀死芽孢的。通过透射电镜观察可知,TS处理组芽孢在萌发过程中芽孢核仍能扩张,表明TS处理后的芽孢可完成萌发进入出芽生长阶段。流式结果显示TS处理组芽孢萌发后SYTO16和PI信号值增加,说明TS处理组芽孢萌发后无法继续生长而失去活性。对芽孢出芽生长阶段中重要物质DNA的研究发现,TS处理组芽孢产生突变体的比例低于5%,说明TS处理未破坏芽孢的DNA。然而,TS处理组芽孢在生长过程中的ATP积累量显著低于未处理组(P<0.05),表明TS处理对合成ATP的相关酶或通路造成不可逆损伤。由此可知TS处理组芽孢萌发后因出芽生长被阻断而失活。(4)TS对芽孢生长代谢通路中关键蛋白的调控采用基于iTRAQ技术的蛋白质组学对TS处理前后芽孢中蛋白进行定量分析,并对显著差异蛋白进行功能注释,进一步剖析TS作用下芽孢的生物学功能变化和蛋白差异表达之间的关系,从而揭示芽孢失活的可能性机制。蛋白定量结果显示在TS处理组芽孢中共鉴定167个显著差异蛋白(Fold change>1.2、Fold change<0.83和P<0.05)。通过KEGG通路富集分析发现TS处理组芽孢显著差异蛋白主要参与能量的产生与转化、翻译、核糖体和蛋白质合成、氨基酸的生物合成与转化等代谢过程。对生物学功能变化和蛋白差异表达进行分析,结果表明TS处理通过下调果糖-二磷酸醛缩酶、戊二酸脱氢酶、苹果酸脱氢酶、细胞色素c氧化酶等关键限制酶的表达来抑制糖酵解、TCA及氧化磷酸化等一系列生化过程,阻断了能量产生与转化;芽孢中Ado Met合成酶、I型谷氨酸-氨连接酶等相关蛋白在TS处理后下调,阻碍了氨基酸的生物合成与代谢等过程;同时参与翻译、核糖体结构和生物合成等过程的结合蛋白Hfq、起始因子IF-3、延长因子P等相关蛋白下调,阻断了信号肽和分子伴侣蛋白的合成,导致信号转导受到抑制,Dna K-Dna J-Grp E等热休克应答系统被破坏。尽管芽孢萌发后会调动与自身防御机制相关的蛋白质大量表达,如肽酰丙基顺反异构酶(PPI)上调,来修复损伤并维持体内环境稳态,但因能量供应不足或核心蛋白的合成能力有限导致无法及时进行损伤修复。最终使处于出芽生长阶段的TS处理组芽孢因代谢异常而无法出芽生长,最终死亡。