论文部分内容阅读
我国幅员辽阔,疆域宽广,遭受的地质灾害也非常多,在一些山地和峡谷尤其容易发生自然灾害。由于地震、山体滑坡和泥石流等自然形成的地质灾害,会使得天然河流的河道中很容易出现由泥土、石砾等组成的障碍物,造成河道堵塞,阻碍水流的正常流动。这些障碍物一般固定堆积在河岸边壁上,在正常的水流条件下,水流不能将其搬运输送至下游,因此称之为堆积体。河道中堆积体的存在会占据原本的河道空间,对水流形成挤压作用,改变河道水流的水力特性。目前水槽试验和圆柱绕流试验和对应的数值模拟是研究绕流结构体变化规律的主要方式,本文的堆积体对河道水流的影响与圆柱绕流有很多相同之处,可以从前人的研究成果中汲取经验。本文在前期水槽试验的基础之上,采用水槽模型试验与数值模拟相结合进行研究的方法,对进口流量、堆积体进占宽、底面坡度、底面粗糙度这四种变量因素进行了模拟和研究分析。本文利用ANSYS软件建立了等比例尺寸的模型,在对模型进行网格划分的时候,采用非结构性四面体网格,选取标准k-ε湍流模型导入Fluent进行模拟计算,选用VOF追踪自由水面的变化。主要的研究成果如下:(1)分析了不同模拟试验条件下的水面线变化。从总体的变化规律来看,河道上游会产生一定的壅水,但水流整体比较平顺,沿程水面线几乎没有变化,纵比降和横比降几乎为0。从壅水效果上来看,流量、堆积体进占宽、底坡对壅水高度起正向的影响,堆积体进占宽对于上游的壅水作用最大,底坡和流量次之,粗糙度的改变对于上游的壅水高度几乎没有影响;当水流经过堆积体,逐渐往下游流动时,水面线会下降,水面纵比降和横比降沿程会逐渐增大,变化最明显的是堆积体进占宽为0.9B的试验条件,此试验条件下对水面线的影响范围也最广,纵比降和横比降变化幅度也最大;在绕过堆积体后,水流向下游流动的同时,还会向左岸扩散,这时会产生水跃现象,水面线会沿程上升,水面纵比降和横比降沿程会逐渐恢复至0。陡坡的试验组由于水流一直处于急流状态,水面线沿程会继续下降,不会发生水跃,这与其他试验条件变化不同。大概在x*=2.5左右,水面线开始稳定,水面纵比降和横比降也趋于0,水流整体处于平稳状态。对于水面纵比降,各变量影响效果从大到小依次为:底坡、进占宽、流量;对于水面横比降,各变量影响效果从大到小依次为:进占宽、底坡、流量。粗糙度的改变并不对水面线和水面比降产生明显的影响。(2)分析了不同模拟试验条件下的时均流场变化。在上游壅水区,因为整体水流较为平顺,所以纵向流速和各断面的断面比能几乎没有变化,水流也没有偏转;从堆积体的渐扩段开始,水流受到堆积体的影响,纵向流速和断面比能开始增加,水流向右岸偏转明显,在水流经过堆积体中轴线(x*=0)附近,纵向流速与断面比能达到峰值,水流向右岸的偏转幅度也达到最大;水流在经过堆积体中轴线(x*=0)后,堆积体的进占宽沿程减小,水流会逐渐向左岸扩散至恢复到天然流态,纵向流速和断面比能沿程会逐渐减小,直至趋于稳定。水流偏转在此时变化比较复杂:流量试验组的水流在下游偏向左岸,并且偏转幅度沿程变小至趋于0;堆积体进占宽为0.9B的试验组,由于堆积体尺寸较大,对于水流影响的范围也变大,水流偏转在下游呈现来回偏转的情况;陡坡的试验组因为没有发生水跃现象,水流依然有很大的动能,并且因为底坡较大,在向下游流动的过程中一部分势能还会继续转化为动能,纵向流速沿程会继续增加,并且因为水流动能较大,水流偏转在下游呈现左右波动的现象。(3)分析了不同模拟试验条件下的水流紊动能变化。整体上看,在上游水流紊动较弱,紊动能数值小。在受堆积体影响的(x~*=-1~1)区域,因为堆积体的影响,水流流速增大,所以紊动能在此区域明显加强。在x~*=0~1区域,为水流的强紊动区,紊动能沿程逐渐增加,直至紊动能达到最大值。在堆积体下游的x~*=2~6.5区域,由于水跃的消能作用,使得水流流速减小,水流向下游流动的过程中会逐渐恢复到天然状态。处于堆积体右侧出现了小部分区域的低紊动能区域,这个区域是对应的回流区,在回流区的水流,流速较低,所以紊动能小。下游强紊动能区域面积最大的是堆积进占宽体试验组,对紊动能的影响最大,对紊动能影响最小的是粗糙度试验组,粗糙度的变化对于紊动能没有明显的影响。(4)分析了不同模拟试验条件下的回流区变化。本文通过找出每个试验组的u=0和v=0点的坐标,将各坐标点连接得出边界线为一条弯折的曲线。同时用y=ax~b+c形式的曲线进行拟合,得出回流区分界线。研究结果表明,堆积体进占宽对于回流区范围的影响最大,底坡次之,流量再次,粗糙度对于回流区范围影响几乎为0;对于环流相对强度,其变化和水流的偏转变化规律基本一致;一定条件下的水流绕过障碍物时,会形成一个固定涡体结构,本文根据前人的经验公式,以流量为变量进行涡体的变化研究,当水流流量较小时,对应的流速也较小,在回流区会形成一个固定的稳定的涡体,当流量逐渐增加,水流对应雷诺数Re也会增大,涡体逐渐变得细长,逐渐从外缘脱落,直至消失,若继续增大流量,使得雷诺数大于12000时,在原来涡体下游又会出现新的涡体结构。